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1 Introduction

In the first term of your studies you were introduced to the concepts of groups, rings
and fields. Linear algebra comes to add a further concept, that of a vector space.
If we think of the concept of groups as a general setting in which we can add and
subtract, rings as a general setting in which we can add, subtract, and multiply, and
fields as a general setting in which we can add, subtract, multiply, and divide, then
a vector space can be thought of as a general setting in which we can add, subtract,
and scale.

These two operations are modelled according to our intuition about vectors in the
plane: vectors are added using the ‘parallelogram rule’, or by adding their coordinates
separately, and they can be stretched or contracted by multiplication with a real
number.

We defined groups in such a way that we can use our intuition about addition of
numbers to prove results about groups, but we made the definition general enough
that these proofs apply to many situations. In other words, we wanted a large variety
of objects to be accepted as groups, to maximise the benefit from proving theorems
about all groups.

Likewise, now that we are about to define our new concept of vector space, we
want to do it in such a way that, on one hand, our intuition about vectors in the
plane can help us prove theorems, and on the other hand, as many objects as possible
are accepted as vector spaces.

And indeed, vector spaces are abundant across mathematics, and their study
—Linear algebra— has found a large variety of applications, both theoretical and
practical. Some of them will be mentioned in the course, and many others can be
found in the many textbooks about the topic.

2 Vector spaces

2.1 Definition of a vector space

We now give the definition of a vector space, making the idea sketched in the Intro-
duction more precise.

Definition. A vector space over a field K, is a set V endowed with two operations,
+ : V ×V → V (vector addition) and · : K×V → V (scalar multiplication), satisfying
the following requirements for all α, β ∈ K and all u,v ∈ V .

(i) Vector addition + satisfies axioms A1, A2, A3 and A4.

(ii) α · (u+ v) = α · u+ α · v;

(iii) (α+ β) · v = α · v + β · v;

(iv) (αβ) · v = α · (β · v);

(v) 1 · v = v.

Elements of the field K will be called scalars, while elements of V will be called
vectors. We will use boldface letters like v to denote vectors. The zero vector in
V will be written as 0V , or usually just 0. This is different from the zero scalar
0 = 0K ∈ K.

The notation + : V × V → V we used above means that our addition takes two
elements of V as arguments and returns another element of V . Some authors formu-
late this by saying that V is closed under addition. Likewise, scalar multiplication
takes an element of K and an element of V as arguments, and always returns an
element of V .
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Nearly all results in this course are not less interesting if we assume that K is
the field R of real numbers. So you may find it helpful to first assume K = R when
solving problems, and later let K be an arbitrary field once you understand the real
case.

2.2 Addition and multiplication axioms and fields

Let K be a set, and suppose we have an operation + : K ×K → K. If we want to
call this operation ‘addition’, then it is natural to ask that it satisfies the following
requirements, called axioms for addition.

Axioms for addition.

A1. (α+ β) + γ = α+ (β + γ) for all α, β, γ ∈ K.

A2. There is an element 0 ∈ K such that α+ 0 = 0 + α = α for all α ∈ K.

A3. For each α ∈ K there exists an element −α ∈ K such that α+(−α) = (−α)+α =
0.

A4. α+ β = β + α for all α, β ∈ K.

For example, in N, A1 and A4 hold but A2 and A3 do not hold. A1–A4 all hold
in Z,Q,R and C.

Note that A1–A3 say that (K,+) is a group, while A4 says that this group is
abelian.

Similarly, if we have an operation · : K ×K → K, then we are justified to call it
a multiplication operation if it satisfies the following:

Axioms for multiplication.

M1. (α · β) · γ = α · (β · γ) for all α, β, γ ∈ K.

M2. There is an element 1 ∈ K such that α · 1 = 1 · α = α for all α ∈ K.

M3. For each α ∈ K with α 6= 0, there exists an element α−1 ∈ K such that
α · α−1 = α−1 · α = 1.

M4. α · β = β · α for all α, β ∈ K.

In N and Z, M1,M2 and M4 hold but M3 does not. M1–M4 all hold in Q,R and
C.

Using these axioms, we can formulate the definition of a field as follows

Definition. LetK be a set on which two operations +: K×K → K and · : K ×K → K
(called addition and multiplication) are defined. Then K is called a field if it satisfies
each of the axioms A1–A4 and M1–M4, as well as 1 6= 0, and the following axiom:

D. (α+ β) · γ = α · γ + β · γ for all α, β, γ ∈ K.

Roughly speaking, K is a field if addition, subtraction, multiplication and division
(except by zero) are all possible in K. We will usually use the letter K for a general
field.

Example. N and Z with the usuall operations are not fields, but Q, R and C are.

There are many other fields, including some finite fields. For example, for each
prime number p, there is a field Fp = {0, 1, 2, . . . , p − 1} with p elements, where
addition and multiplication are carried out modulo p. Thus, in F7, we have 5+4 = 2,
5 × 4 = 6 and 5−1 = 3 because 5 × 3 = 1. The smallest such field F2 has just two
elements 0 and 1, where 1 + 1 = 0. This field is extremely important in Computer
Science since an element of F2 represents one bit of information.
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2.3 Examples of vector spaces

1. Kn = {(α1, α2, . . . , αn) | αi ∈ K}. This is the space of row vectors. Addition
and scalar multiplication are defined by the obvious rules:

(α1, α2, . . . , αn) + (β1, β2, . . . , βn) = (α1 + β1, α2 + β2, . . . , αn + βn);

λ(α1, α2, . . . , αn) = (λα1, λα2, . . . , λαn).

The most familiar examples are

R2 = {(x, y) | x, y ∈ R} and R3 = {(x, y, z) | x, y, z ∈ R},

which we can think of geometrically as the points in ordinary 2- and 3-dimen-
sional space, equipped with a coordinate system.

Vectors in R2 and R3 can also be thought of as directed lines joining the origin
to the points with coordinates (x, y) or (x, y, z).

0 =(0,0)✘
✘✘✘✘✘✘✘✘✘✘✘✿ (x, y)

Addition of vectors is then given by the parallelogram law.

0 ✘✘✘✘✘✘✘✘✘✘✘✘✘✘✿

✄
✄
✄
✄✗

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✯

v1

v2

v1 + v2

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✄
✄
✄
✄

Note that K1 is essentially the same as K itself.

2. Let K[x] be the set of polynomials in an indeterminate x with coefficients in
the field K. That is,

K[x] = {α0 + α1x+ · · ·+ αnx
n | n ≥ 0, αi ∈ K}.

Then K[x] is a vector space over K.

3. Let K[x]≤n be the set of polynomials over K of degree at most n, for some
n ≥ 0. Then K[x]≤n is also a vector space over K; in fact it is a subspace of
K[x].

Note that the polynomials of degree exactly n do not form a vector space. (Why
not?)

4. Let K = R and let V be the set of n-times differentiable functions f : R → R

which are solutions of the differential equation

λ0
dnf

dxn
+ λ1

dn−1f

dxn−1
+ · · ·+ λn−1

df

dx
+ λnf = 0.

for fixed λ0, λ1, . . . , λn ∈ R. Then V is a vector space over R, for if f(x) and
g(x) are both solutions of this equation, then so are f(x) + g(x) and αf(x) for
all α ∈ R.
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5. The previous example is a space of functions. There are many such examples
that are important in Analysis. For example, the set Ck((0, 1),R), consisting
of all functions f : (0, 1) → R such that the kth derivative f (k) exists and is
continuous, is a vector space over R with the usual pointwise definitions of
addition and scalar multiplication of functions.

6. Any n bits of information can be thought of as a vector in Fn2 .

Facing such a variety of vector spaces, a mathematician wants to derive useful
methods of handling all these vector spaces. If work out techniques for dealing with a
single example, say R3, how can we be certain that our methods will also work for R8

or even C8? That is why we use the axiomatic approach to developing mathematics.
We must use only arguments based on the vector space axioms. We have to avoid
making any other assumptions. This ensures that everything we prove is valid for all
vector spaces, not just the familiar ones like R3.

We shall be assuming the following additional simple properties of vectors and
scalars from now on. They can all be deduced from the axioms (and it is a useful
exercise to do so).

(i) α0 = 0 for all α ∈ K

(ii) 0v = 0 for all v ∈ V

(iii) −(αv) = (−α)v = α(−v), for all α ∈ K and v ∈ V .

(iv) if αv = 0 then α = 0 or v = 0.

3 Linear independence, spanning and bases of vector

spaces

3.1 Linear dependence and independence

Definition. Let V be a vector space over the field K. The vectors v1,v2, . . .vn ∈ V
are said to be linearly dependent if there exist scalars α1, α2, . . . , αn ∈ K, not all zero,
such that

α1v1 + α2v2 + · · ·+ αnvn = 0.

If the vectors v1,v2, . . .vn are not linearly dependent, they are said to be linearly inde-
pendent. In other words, they are linearly independent if the only scalars α1, α2, . . . , αn ∈
K that satisfy the above equation are α1 = 0, α2 = 0, . . . , αn = 0.

Definition. Vectors of the form α1v1+α2v2+ · · ·+αnvn for α1, α2, . . . , αn ∈ K are
called linear combinations of v1,v2, . . .vn.

Example. Let V = R2, v1 = (1, 3), v2 = (2, 5).

Then α1v1+α2v2 = (α1+2α2, 3α1+5α2), which is equal to 0 = (0, 0) if and only
if α1 + 2α2 = 0 and 3α1 + 5α2 = 0. Thus we have a pair of simultaneous equations
in α1, α2 and the only solution is α1 = α2 = 0, so v1, v2 are linearly independent.

Example. Let V = R2, v1 = (1, 3), v2 = (2, 6).

This time the equations are α1 + 2α2 = 0 and 3α1 + 6α2 = 0, and there are
non-zero solutions, such as α1 = −2, α2 = 1, and so v1, v2 are linearly dependent.

Lemma 3.1. v1,v2, . . . ,vn ∈ V are linearly dependent if and only if either v1 = 0
or, for some r, vr is a linear combination of v1, . . . ,vr−1.
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Proof. If v1 = 0 then by putting α1 = 1 and αi = 0 for i > 1 we get α1v1 + · · · +
αnvn = 0, so v1,v2, . . . ,vn ∈ V are linearly dependent.

If vr is a linear combination of v1, . . . ,vr−1, then vr = α1v1 + · · ·+αr−1vr−1 for
some α1, . . . , αr−1 ∈ K and so we get α1v1 + · · · + αr−1vr−1 − 1vr = 0 and again
v1,v2, . . . ,vn ∈ V are linearly dependent.

Conversely, suppose that v1,v2, . . . ,vn ∈ V are linearly dependent, and αi are
scalars, not all zero, satisfying α1v1+α2v2+ · · ·+αnvn = 0. Let r be maximal with
αr 6= 0; then α1v1 + α2v2 + · · · + αrvr = 0. If r = 1 then α1v1 = 0 which, by (iv)
above, is only possible if v1 = 0. Otherwise, we get

vr = −
α1

αr
v1 − · · · −

αr−1

αr
vr−1.

In other words, vr is a linear combination of v1, . . . ,vr−1.

3.2 Spanning vectors

Definition. We say that the vectors v1, . . . ,vn ∈ V span V , if every vector v ∈ V is
a linear combination α1v1 + α2v2 + · · ·+ αnvn of v1, . . . ,vn.

3.3 Bases of vector spaces

Definition. The vectors v1, . . . ,vn in V form a basis of V , if they are linearly inde-
pendent and span V .

Proposition 3.2. The vectors v1, . . . ,vn form a basis of V if and only if for every
v ∈ V there is a unique sequence of scalars α1, α2, . . . , αn such that
v = α1v1 + α2v2 + · · ·+ αnvn.

Proof. Suppose that v1, . . . ,vn form a basis of V . Then they span V , so certainly
every v ∈ V can be written as v = α1v1 + α2v2 + · · ·+ αnvn. Suppose now there is
a further sequence of scalars βi ∈ K such that v = β1v1 + β2v2 + · · ·+ βnvn. Then
we have

0 = v − v = (α1v1 + α2v2 + · · ·+ αnvn)− (β1v1 + β2v2 + · · ·+ βnvn)

= (α1 − β1)v1 + (α2 − β2)v2 + · · ·+ (αn − βn)vn

and so

(α1 − β1) = (α2 − β2) = · · · = (αn − βn) = 0

by linear independence of v1, . . . ,vn. Hence αi = βi for all i, which means that the
sequence αi is indeed unique.

Conversely, suppose that every v ∈ V can be written uniquely as v = α1v1 +
α2v2+ · · ·+αnvn. Then v1, . . . ,vn certainly span V . If α1v1+α2v2+ · · ·+αnvn = 0,
then

α1v1 + α2v2 + · · ·+ αnvn = 0v1 + 0v2 + · · ·+ 0vn.

Applying the uniqueness assumption to the vector 0 yields that α1 = α2 = · · · = αn =
0, and so v1, . . . ,vn are linearly independent. Hence they form a basis of V .

Definition. The scalars α1, . . . , αn in the statement of the proposition are called the
coordinates of v with respect to the basis v1, . . . ,vn.

With respect to a different basis, v will have different coordinates. Thus, a basis
for a vector space can be thought of as a choice of a system of coordinates.
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Examples Here are some examples of bases of vector spaces.

1. (1, 0) and (0, 1) form a basis of K2. This follows from Proposition 3.2, because
each element (α1, α2) ∈ K2 can be written as α1(1, 0) + α2(0, 1), and this
expression is clearly unique.

2. More generally, (1, 0, 0), (0, 1, 0), (0, 0, 1) form a basis ofK3, (1, 0, 0, 0), (0, 1, 0, 0),
(0, 0, 1, 0), (0, 0, 0, 1) form a basis of K4 and so on. This is called the standard
basis of Kn for n ∈ N.

(To be precise, the standard basis of Kn is v1, . . . ,vn, where vi is the vector
with a 1 in the ith position and a 0 in all other positions.)

3. There are many other bases of Kn. For example (1, 0), (1, 1) form a basis of
K2, because (α1, α2) = (α1 −α2)(1, 0)+α2(1, 1), and this expression is unique.
In fact, any two non-zero vectors such that one is not a scalar multiple of the
other form a basis for K2.

4. The way we defined a basis, it has to consist of a finite number of vectors.
Not every vector space has a finite basis. For example, let K[x] be the space
of polynomials in x with coefficients in K. Let p1(x), p2(x), . . . , pn(x) be any
finite collection of polynomials in K[x]. Then, if d is the maximum degree
of p1(x), p2(x), . . . , pn(x), any linear combination of p1(x), p2(x), . . . , pn(x) has
degree at most d, and so p1(x), p2(x), . . . , pn(x) cannot span K[x]. On the other
hand, it is possible (with a little care) to define what it means for an infinite set
of vectors to be a basis of a vector space; in fact the infinite sequence of vectors
1, x, x2, x3, . . . , xn, . . . is a basis of K[x].

A vector space is called finite-dimensional if it has a finite basis. Nearly all of
this course will be about finite-dimensional spaces, but it is important to remember
that these are not the only examples. The spaces of functions mentioned in Example
5. of Section 2 typically have no countable basis.

Theorem 3.3 (The basis theorem). Suppose that v1, . . . ,vm and w1, . . . ,wn are
both bases of the vector space V . Then m = n. In other words, all finite bases of V
contain the same number of vectors.

For the proof of this theorem we will need some intermediate facts and the concept
of sifting which we introduce after the next lemma.

Definition. The number n of vectors in a basis of the finite-dimensional vector space
V is called the dimension of V , and we write dim(V ) = n.

Thus, as we might expect, Kn has dimension n. K[x] is infinite-dimensional, but
the space K[x]≤n of polynomials of degree at most n has basis 1, x, x2, . . . , xn, so its
dimension is n+ 1 (not n).

Note that the dimension of V depends on the field K. Thus the complex numbers
C can be considered as

• a vector space of dimension 1 over C, with one possible basis being the single
element 1;

• a vector space of dimension 2 over R, with one possible basis given by the two
elements 1, i;

• a vector space of infinite dimension over Q.

The first step towards proving the basis theorem is to be able to remove unneces-
sary vectors from a spanning set of vectors.
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Lemma 3.4. Suppose that the vectors v1,v2, . . . ,vn,w span V and that w is a linear
combination of v1, . . . ,vn. Then v1, . . . ,vn span V .

Proof. Since v1,v2, . . . ,vn,w span V , any vector v ∈ V can be written as

v = α1v1 + · · ·+ αnvn + βw,

But w is a linear combination of v1, . . . ,vn, so w = γ1v1+ · · ·+γnvn for some scalars
γi; replacing in the above equation we obtain

v = α1v1 + · · ·+ αnvn + β(γ1v1 + · · ·+ γnvn)

= (α1 + βγ1)v1 + · · ·+ (αn + βγn)vn.

Thus v is a linear combination of v1, . . . ,vn, which therefore span V .

There is an important process, called sifting, which can be applied to any sequence
of vectors v1,v2, . . . ,vn in a vector space V , as follows. We consider each vector vi
in turn. If it is zero, or a linear combination of the preceding vectors v1, . . . ,vi−1,
then we remove it from the list.

Example. Let us sift the following sequence of vectors in R3.

v1 = (0, 0, 0) v2 = (1, 1, 1) v3 = (2, 2, 2) v4 = (1, 0, 0)

v5 = (3, 2, 2) v6 = (0, 0, 0) v7 = (1, 1, 0) v8 = (0, 0, 1)

v1 = 0, so we remove it. v2 is non-zero so it stays. v3 = 2v2 so it is removed. v4

is clearly not a linear combination of v2, so it stays.
We have to decide next whether v5 is a linear combination of v2,v4. If so, then

(3, 2, 2) = α1(1, 1, 1) + α2(1, 0, 0), which (fairly obviously) has the solution α1 = 2,
α2 = 1, so remove v5. Then v6 = 0 so that is removed too.

Next we try v7 = (1, 1, 0) = α1(1, 1, 1) + α2(1, 0, 0), and looking at the three
components, this reduces to the three equations

1 = α1 + α2; 1 = α1; 0 = α1.

The second and third of these equations contradict each other, and so there is no
solution. Hence v7 is not a linear combination of v2,v4, and it stays.

Finally, we need to try

v8 = (0, 0, 1) = α1(1, 1, 1) + α2(1, 0, 0) + α3(1, 1, 0)

leading to the three equations

0 = α1 + α2 + α3 0 = α1 + α3; 1 = α1

and solving these in the normal way, we find a solution α1 = 1, α2 = 0, α3 = −1.
Thus we delete v8 and we are left with just v2,v4,v7.

Of course, the vectors that are removed during the sifting process depends very
much on the order of the list of vectors. For example, if v8 had come at the beginning
of the list rather than at the end, then we would have kept it.

Definition. The vectors remaining after applying the process of sifting to a sequence
of vectors v1, . . . ,vr is called the sifted subsequence of v1, . . . ,vr.

The idea of sifting allows us to prove the following theorem, stating that every
finite sequence of vectors which spans a vector space V actually contains a basis for
V .
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Theorem 3.5. Suppose that the vectors v1, . . . ,vr span the vector space V . Then
the sifted subsequence of v1, . . . ,vr forms a basis of V .

Proof. We sift the vectors v1, . . . ,vr. The vectors that we remove are linear combin-
ations of the preceding vectors, and so applying Lemma 3.4 after each step, we see
that the remaining vectors still span V . After sifting, no vector is zero or a linear
combination of the preceding vectors (otherwise it would have been removed), so by
Lemma 3.1, the remaining vectors are linearly independent. Hence they form a basis
of V .

The last theorem tells us that any vector space with a finite spanning set is finite-
dimensional, and indeed the spanning set contains a basis. We now prove the dual
result: any linearly independent set is contained in a basis.

Theorem 3.6. Let V be a vector space over K which has a finite spanning set, and
suppose that the vectors v1, . . . ,vr are linearly independent in V . Then we can extend
the sequence to a basis v1, . . . ,vn of V , where n ≥ r.

Proof. Let w1, . . . ,wq be a spanning set for V . We sift the combined sequence

v1, . . . ,vr,w1, . . . ,wq.

Since w1, . . . ,wq span V , the whole sequence spans V . Sifting results in a basis for
V by Theorem 3.5. Since v1, . . . ,vr are linearly independent, none of them can be a
linear combination of the preceding vectors by Lemma 3.1, and hence none of the vi
are deleted in the sifting process. Thus the resulting basis contains v1, . . . ,vr.

Example. The vectors v1 = (1, 2, 0, 2),v2 = (0, 1, 0, 2) are linearly independent in
R4. Let us extend them to a basis of R4. The easiest thing is to append the standard
basis of R4, giving the combined list of vectors

v1 = (1, 2, 0, 2), v2 = (0, 1, 0, 2), w1 = (1, 0, 0, 0),

w2 = (0, 1, 0, 0), w3 = (0, 0, 1, 0), w4 = (0, 0, 0, 1),

which we shall sift. We find that (1, 0, 0, 0) = α1(1, 2, 0, 2) + α2(0, 1, 0, 2) has no
solution, so w1 stays. However, w2 = v1 − v2 −w1 so w2 is deleted. It is clear that
w3 is not a linear combination of v1,v2,w1, because all of those have a 0 in their
third component. Hence w3 remains. Now we have four linearly independent vectors,
so must have a basis at this stage, and we can stop the sifting early by Theorem 3.3
(which we haven’t finished proving yet). The resulting basis is

v1 = (1, 2, 0, 2), v2 = (0, 1, 0, 2), w1 = (1, 0, 0, 0), w3 = (0, 0, 1, 0).

We are now ready to prove Theorem 3.3. Since bases of V are both linearly
independent and span V , the following proposition implies that any two bases contain
the same number of vectors.

Proposition 3.7 (The exchange lemma). Suppose that vectors v1, . . . ,vn span V
and that vectors w1, . . . ,wm ∈ V are linearly independent. Then m ≤ n.

Proof. The idea is to place the wi one by one in front of the sequence v1, . . . ,vn,
sifting each time.

Since v1, . . . ,vn span V , w1,v1, . . . ,vn are linearly dependent, so when we sift,
at least one vj is deleted. We then place w2 in front of the resulting sequence and
sift again. Then we put w3 in from of the result, and sift again, and carry on doing
this for each wi in turn. Since w1, . . . ,wm are linearly independent none of them are
ever deleted. We claim that, on the other hand, at least one vj is deleted in each
step.
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To see this, note that the sifted subsequence we obtain after each step spans V ,
which can be proved by inductively applying Theorem 3.5. Thus at the beginning of
each step we place a vector in front of a sequence which spans V , and so the extended
sequence is linearly dependent; hence at least one vj gets eliminated each time.

Now in total, we appendm vectors wi, and each time at least one vj is eliminated,
so we must have m ≤ n.

Corollary 3.8. Let V be a vector space of dimension n over K. Then any n vectors
which span V form a basis of V , and no n− 1 vectors can span V .

Proof. After sifting a spanning sequence, the remaining vectors form a basis by The-
orem 3.5. So by Theorem 3.3, there must be precisely n = dim(V ) vectors remaining.
The result is now clear.

Corollary 3.9. Let V be a vector space of dimension n over K. Then any n linearly
independent vectors form a basis of V and no n+1 vectors can be linearly independent.

Proof. By Theorem 3.6 any linearly independent set is contained in a basis but by
Theorem 3.3, there must be precisely n = dim(V ) vectors in that basis. The result is
now clear.

3.4 Existence of a basis

Although we have studied bases quite carefully in the previous section, we have not
addressed the following fundamental question. Let V be a vector space. Does it
contain a basis?

Theorem 3.5 gives a partial answer that is good for many practical purposes. Let
us formulate it as a corollary.

Corollary 3.10. If a non-trivial vector space V is spanned by a finite number of
vectors, then it has a basis.

In fact, if we define the idea of an infinite basis carefully, then it can be proved
that any vector space has a basis. That result will not be proved in this course. Its
proof, which necessarily deals with infinite sets, requires a subtle result in axiomatic
set theory called Zorn’s lemma.

4 Subspaces

Let V be a vector space over the field K. Certain subsets of V have the nice property
of being closed under addition and scalar multiplication; that is, adding or taking
scalar multiples of vectors in the subset gives vectors which are again in the subset.
We call such a subset a subspace:

Definition. A subspace of V is a non-empty subset W ⊆ V such that

(i) W is closed under addition: u,v ∈W ⇒ u+ v ∈W ;

(ii) W is closed under scalar multiplication: v ∈W, α ∈ K ⇒ αv ∈W .

These two conditions can be replaced with a single condition

u,v ∈W,α, β ∈ K ⇒ αu+ βv ∈W.

A subspace W is itself a vector space over K under the operations of vector
addition and scalar multiplication in V . Notice that all vector space axioms of W
hold automatically. (They are inherited from V .)



12 10th May 2016

Example. The subset of R2 given by

W = {(α, β) ∈ R2 | β = 2α},

that is, the subset consisting of all row vectors whose second entry is twice their first
entry, is a subspace of R2. You can check that adding two vectors of this form always
gives another vector of this form; and multiplying a vector of this form by a scalar
always gives another vector of this form.

For any vector space V , V is always a subspace of itself. Subspaces other than V
are sometimes called proper subspaces. We also always have a subspace {0} consisting
of the zero vector alone. This is called the trivial subspace, and its dimension is 0,
because it has no linearly independent sets of vectors at all.

Intersecting two subspaces gives a third subspace:

Proposition 4.1. If W1 and W2 are subspaces of V then so is W1 ∩W2.

Proof. Let u,v ∈W1 ∩W2 and α ∈ K. Then u+v ∈W1 (because W1 is a subspace)
and u+ v ∈ W2 (because W2 is a subspace). Hence u+ v ∈ W1 ∩W2. Similarly, we
get αv ∈W1 ∩W2, so W1 ∩W2 is a subspace of V .

It is not necessarily true that W1 ∪W2 is a subspace, as the following example
shows.

Example. Let V = R2, let W1 = {(α, 0) | α ∈ R} and W2 = {(0, α) | α ∈ R}. Then
W1,W2 are subspaces of V , but W1 ∪W2 is not a subspace, because (1, 0), (0, 1) ∈
W1 ∪W2, but (1, 0) + (0, 1) = (1, 1) 6∈W1 ∪W2.

Note that any subspace of V that contains W1 and W2 has to contain all vectors
of the form u+ v for u ∈W1, v ∈W2. This motivates the following definition.

Definition. LetW1,W2 be subspaces of the vector space V . ThenW1+W2 is defined
to be the set of vectors v ∈ V such that v = w1 +w2 for some w1 ∈ W1, w2 ∈ W2.
Or, if you prefer, W1 +W2 = {w1 +w2 | w1 ∈W1,w2 ∈W2}.

Do not confuse W1 +W2 with W1 ∪W2.

Proposition 4.2. If W1,W2 are subspaces of V then so is W1 +W2. In fact, it is
the smallest subspace that contains both W1 and W2.

Proof. Let u,v ∈ W1 +W2. Then u = u1 + u2 for some u1 ∈ W1, u2 ∈ W2 and
v = v1+v2 for some v1 ∈W1, v2 ∈W2. Then u+v = (u1+v1)+(u2+v2) ∈W1+W2.
Similarly, if α ∈ K then αv = αv1 + αv2 ∈ W1 +W2. Thus W1 +W2 is a subspace
of V .

Any subspace of V that contains both W1 and W2 must contain W1 + W2 by
closedness, so the latter is the smallest such subspace.

Definition. Two subspaces W1,W2 of V are called complementary if W1∩W2 = {0}
and W1 +W2 = V .

Proposition 4.3. Let W1,W2 be subspaces of V . Then W1,W2 are complementary
subspaces if and only if each vector v ∈ V can be written in a unique way as v =
w1 +w2 with w1 ∈W1 and w2 ∈W2.

Proof. Suppose first that W1,W2 are complementary subspaces and let v ∈ V . Then
W1 +W2 = V , so we can find w1 ∈ W1 and w2 ∈ W2 with v = w1 +w2. If we also
had v = w′

1+w′
2 with w′

1 ∈W1, w
′
2 ∈W2, then we would have w1−w′

1 = w′
2−w2.

The left-hand side lies in W1 and the right-hand side lies in W2, and so both sides
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(being equal) must lie in W1 ∩W2 = {0}. Hence both sides are zero, which means
w1 = w′

1 and w2 = w′
2, so the expression is unique.

Conversely, suppose that every v ∈ V can be written uniquely as v = w1+w2 with
w1 ∈W1 and w2 ∈W2. Then certainly W1 +W2 = V . If v was a non-zero vector in
W1∩W2, then in fact v would have two distinct expressions as w1+w2 with w1 ∈W1

and w2 ∈W2, one with w1 = v, w2 = 0 and the other with w1 = 0, w2 = v. Hence
W1 ∩W2 = {0}, and W1 and W2 are complementary.

Examples We give some examples of complementary subspaces.

1. As in the previous example, let V = R2, W1 = {(α, 0) | α ∈ R} and W2 =
{(0, α) | α ∈ R}. Then W1 and W2 are complementary subspaces.

2. Let V = R3, W1 = {(α, 0, 0) | α ∈ R} and W2 = {(0, α, β) | α, β ∈ R}. Then
W1 and W2 are complementary subspaces.

3. Let V = R2, W1 = {(α, α) | α ∈ R} and W2 = {(−α, α) | α ∈ R}. Then W1

and W2 are complementary subspaces.

Another way to form subspaces is to take linear combinations of some given vec-
tors:

Proposition 4.4. Let v1, . . . ,vn be vectors in the vector space V . Then the set of
all linear combinations α1v1 + α2v2 + · · · + αnvn of v1, . . . ,vn forms a subspace of
V .

The proof of this is completely routine and will be omitted. The subspace in this
proposition is known as the subspace spanned by v1, . . . ,vn.

The following nice fact shows that dimension is monotone with respect to sub-
spaces:

Proposition 4.5. Let V be a finite-dimensional vector space and W a subspace of
V . Then dim(W ) ≤ dim(V ).

Proof. If dim(W ) > dim(V ) then, easily, W has a linearly independent subset F
with more than dim(V ) elements. But F is also a linearly independent subset of V ,
contradicting Corollary 3.9.

We finish the section with our deepest theorem about subspaces. In a sense,
it corresponds to the following basic fact about sets: if A,B are finite sets, then
|A ∪B| = |A|+ |B| − |A ∩B|.

Theorem 4.6. Let V be a finite-dimensional vector space, and let W1,W2 be sub-
spaces of V . Then

dim(W1 +W2) = dim(W1) + dim(W2)− dim(W1 ∩W2).

Proof. First note that any subspace W of V is finite-dimensional by Proposition 4.5.
Let dim(W1 ∩W2) = r and let e1, . . . , er be a basis of W1 ∩W2. Then e1, . . . , er

is a linearly independent set of vectors, so by Theorem 3.6 it can be extended to a
basis e1, . . . , er,f1, . . . , fs of W1 where dim(W1) = r + s, and it can also be extended
to a basis e1, . . . , er,g1, . . . ,gt of W2, where dim(W2) = r + t.

To prove the theorem, we need to show that dim(W1 +W2) = r + s + t, and to
do this, we shall show that

e1, . . . , er, f1, . . . , fs,g1, . . . ,gt

is a basis of W1 +W2. Certainly they all lie in W1 +W2.
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First we show that they span W1 +W2. Any v ∈ W1 +W2 is equal to w1 +w2

for some w1 ∈W1, w2 ∈W2. So we can write

w1 = α1e1 + · · ·+ αrer + β1f1 + · · ·+ βsfs

for some scalars αi, βj ∈ K, and

w2 = γ1e1 + · · ·+ γrer + δ1g1 + · · ·+ δtgt

for some scalars γi, δj ∈ K. Then

v = (α1 + γ1)e1 + · · ·+ (αr + γr)er + β1f1 + · · ·+ βsfs + δ1g1 + · · ·+ δtgt

and so e1, . . . , er, f1, . . . , fs,g1, . . . ,gt span W1 +W2.

Finally we have to show that e1, . . . , er, f1, . . . , fs,g1, . . . ,gt are linearly independ-
ent. Suppose that

α1e1 + · · ·+ αrer + β1f1 + · · ·+ βsfs + δ1g1 + · · ·+ δtgt = 0 (⋄)

for some scalars αi, βj , δk ∈ K. Then

α1e1 + · · ·+ αrer + β1f1 + · · ·+ βsfs = −δ1g1 − · · · − δtgt (∗)

The left-hand side of this equation lies in W1 and the right-hand side of this equation
lies in W2. Since the two sides are equal, both must in fact lie in W1 ∩W2. Since
e1, . . . , er is a basis of W1 ∩W2, we can write the right-hand vector as

−δ1g1 − · · · − δtgt = γ1e1 + · · ·+ γrer

for some γi ∈ K, and so

γ1e1 + · · ·+ γrer + δ1g1 + · · ·+ δtgt = 0.

But, e1, . . . , er,g1, . . . ,gt form a basis of W2, so they are linearly independent, and
hence γi = 0 for 1 ≤ i ≤ r and δi = 0 for 1 ≤ i ≤ t. But now, from the equation (∗)
above, we get

α1e1 + · · ·+ αrer + β1f1 + · · ·+ βsfs = 0.

Now e1, . . . , er, f1, . . . , fs form a basis of W1, so they are linearly independent, and
hence αi = 0 for 1 ≤ i ≤ r and βi = 0 for 1 ≤ i ≤ s. Thus all coefficients in equation
(⋄) are zero, proving that the vectors e1, . . . , er, f1, . . . , fs, g1, . . . , gt are linearly
independent, which completes the proof that they form a basis of W1 +W2.

Hence

dim(W1+W2) = r+s+t = (r+s)+(r+t)−r = dim(W1)+dim(W2)−dim(W1∩W2).

5 Linear transformations

When you study sets, the notion of function is extremely important. There is little
to say about a single isolated set, while functions allow you to link different sets.
Similarly, in Linear Algebra, a single isolated vector space is not the end of the story.
Things become more interesting when we connect different vector spaces by functions,
especially when these functions respect the vector space operations in some way.
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5.1 Definition and examples

Often in mathematics, it is as important to study special classes of functions as it is
to study special classes of objects. Usually these are functions which preserve certain
properties or structures. For example, continuous functions preserve which points are
close to which other points. In linear algebra, the functions which preserve the vector
space structure are called linear transformations; they are defined as follows

Definition. Let U, V be two vector spaces over the same field K. A linear trans-
formation, or linear map, from U to V is a function T : U → V such that

(i) T (u1 + u2) = T (u1) + T (u2) for all u1,u2 ∈ U ;

(ii) T (αu) = αT (u) for all α ∈ K and u ∈ U .

Notice that these two conditions are equivalent to the following single condition

T (αu1 + βu2) = αT (u1) + βT (u2) for all u1,u2 ∈ U,α, β ∈ K.

First let us state a couple of easy consequences of the definition:

Lemma 5.1. Let T : U → V be a linear map. Then

(i) T (0U ) = 0V ;

(ii) T (−u) = −T (u) for all u ∈ U .

Proof. For (i), the definition of linear map gives

T (0U ) = T (0U + 0U ) = T (0U ) + T (0U ),

and therefore T (0U ) = 0V . For (ii), just put α = −1 in the definition of linear
map.

Examples Many familiar geometrical transformations, such as projections, rota-
tions, reflections and magnifications are linear maps, and the first three examples
below are of this kind. Note, however, that a nontrivial translation is not a linear
map, because it does not satisfy T (0U ) = 0V .

1. Let U = R3, V = R2 and define T : U → V by T ((α, β, γ)) = (α, β). Then
T is a linear map. This type of map is known as a projection, because of the
geometrical interpretation.

0 ❳❳❳❳❳❳

✟✟✟✟✟

z

x

y

✡
✡
✡
✡✣

✲

v

T(v)

Note: In the future we shall just write T (α, β, γ) instead of T ((α, β, γ)).

2. Let U = V = R2. We interpret v in R2 as a directed line vector from 0 to v
(see the examples in Section 2), and let T (v) be the vector obtained by rotating
v through an angle θ anti-clockwise about the origin.

0
✏✏✏✏✏✏✏✶

✂
✂
✂
✂
✂
✂✂✍

v

T (v)

θ
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It is easy to see geometrically that T (u1 + u2) = T (u1) + T (u2) and T (αu) =
αT (u) (because everything is simply rotated about the origin), and so T is a
linear map. By considering the unit vectors, we have T (1, 0) = (cos θ, sin θ) and
T (0, 1) = (− sin θ, cos θ), and hence

T (α, β) = αT (1, 0) + βT (0, 1) = (α cos θ − β sin θ, α sin θ + β cos θ).

(Exercise: Show this directly.)

3. Let U = V = R2 again. Now let T (v) be the vector resulting from reflecting v
through a line through the origin that makes an angle θ/2 with the x-axis.

0

✑
✑
✑

✑
✑
✑
✑

✑
✑
✑

✑❏
❏
❏
❏

✘✘✘✘✘✘✘✿
✓
✓
✓
✓
✓✓✼

v

T (v)

θ/2

This is again a linear map. We find that T (1, 0) = (cos θ, sin θ) and T (0, 1) =
(sin θ,− cos θ), and so

T (α, β) = αT (1, 0) + βT (0, 1) = (α cos θ + β sin θ, α sin θ − β cos θ).

4. Let U = V = R[x], the set of polynomials over R, and let T be differentiation;
i.e. T (p(x)) = p′(x) for p ∈ R[x]. This is easily seen to be a linear map.

5. Let U = K[x], the set of polynomials over K. Every α ∈ K gives rise to two
linear maps, shift Sα : U → U, Sα(f(x)) = f(x − α) and evaluation Eα : U →
K, Eα(f(x)) = f(α).

The next two examples seem dull but are important!

6. For any vector space V , we define the identity map IV : V → V by IV (v) = v
for all v ∈ V . This is a linear map.

7. For any vector spaces U, V over the fieldK, we define the zero map 0U,V : U → V
by 0U,V (u) = 0V for all u ∈ U . This is also a linear map.

One of the most useful properties of linear maps is that, if we know how a linear
map U → V acts on a basis of U , then we know how it acts on the whole of U .

Proposition 5.2 (Linear maps are uniquely determined by their action on a basis).
Let U, V be vector spaces over K, let u1, . . . ,un be a basis of U and let v1, . . . ,vn be
any sequence of n vectors in V . Then there is a unique linear map T : U → V with
T (ui) = vi for 1 ≤ i ≤ n.

Proof. Let u ∈ U . Then, since u1, . . . ,un is a basis of U , by Proposition 3.2, there
exist uniquely determined α1, . . . , αn ∈ K with u = α1u1 + · · · + αnun. Hence, if T
exists at all, then we must have

T (u) = T (α1u1 + · · ·+ αnun) = α1v1 + · · ·+ αnvn,

and so T is uniquely determined.
On the other hand, it is routine to check that the map T : U → V defined by the

above equation is indeed a linear map, so T does exist.
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5.2 Kernels and images

To any linear map U → V , we can associate a subspace of U and a subspace of V
containing important information about the map.

Definition. Let T : U → V be a linear map. The image of T , written as im(T ), is
the set of vectors v ∈ V such that v = T (u) for some u ∈ U .

Definition. The kernel of T , written as ker(T ), is the set of vectors u ∈ U such that
T (u) = 0V .

If you prefer:

im(T ) = {T (u) | u ∈ U}; ker(T ) = {u ∈ U | T (u) = 0V }.

Examples Let us consider the examples 1–7 above.

• In example 1, ker(T ) = {(0, 0, γ) | γ ∈ R}, and im(T ) = R2.

• In example 2 and 3, ker(T ) = {0} and im(T ) = R2.

• In example 4, ker(T ) is the set of all constant polynomials (i.e. those of degree
0), and im(T ) = R[x].

• In example 5, ker(Sα) = {0}, and im(Sα) = K[x], while ker(Eα) is the set of
all polynomials divisible by x− α, and im(Eα) = K.

• In example 6, ker(IV ) = {0} and im(T ) = V .

• In example 7, ker(0U,V ) = U and im(0U,V ) = {0}.

Proposition 5.3. Let T : U → V be a linear map. Then

(i) im(T ) is a subspace of V ;

(ii) ker(T ) is a subspace of U .

Proof. For (i), we must show that im(T ) is closed under addition and scalar multi-
plication. Let v1,v2 ∈ im(T ). Then v1 = T (u1), v2 = T (u2) for some u1,u2 ∈ U .
By the definition of a linear map, we have

v1 + v2 = T (u1) + T (u2) = T (u1 + u2) ∈ im(T )

and
αv1 = αT (u1) = T (αu1) ∈ im(T ),

so im(T ) is a subspace of V .
Let us now prove (ii). Similarly, we must show that ker(T ) is closed under addition

and scalar multiplication. Let u1,u2 ∈ ker(T ). Then, by the linearity of T , we have

T (u1 + u2) = T (u1) + (u2) = 0V + 0V = 0V

and
T (αu1) = αT (u1) = α0V = 0V ,

so u1 + u2, αu1 ∈ ker(T ) and hence ker(T ) is a subspace of U .

Proposition 5.4. Let T : U → V be a linear map. Then T is injective if and only if
ker(T ) = {0U}.

Proof. Proof of ⇒. Suppose that T is injective and let u ∈ ker(T ). Then T (0U ) =
0V = T (u), so T (0U ) = T (u). But T is injective so 0U = u. This proves ⇒.

Proof of ⇐. Let ker(T ) = 0 and assume that u1,u2 ∈ U are such that T (u1) =
T (u2). Then 0V = T (u1) − T (u2) = T (u1 − u2). So u1 − u2 ∈ ker(T ) = 0 and
therefore u1 − u2 = 0U , that is, u1 = u2. This proves ⇐.
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5.3 Rank and nullity

The dimensions of the kernel and image of a linear map contain important information
about it, and are related to each other.

Definition. let T : U → V be a linear map.

(i) dim(im(T )) is called the rank of T ;

(ii) dim(ker(T )) is called the nullity of T .

Theorem 5.5 (The rank-nullity theorem). Let U, V be vector spaces over K with U
finite-dimensional, and let T : U → V be a linear map. Then

rank(T ) + nullity(T ) = dim(U).

Proof. Since U is finite-dimensional and ker(T ) is a subspace of U , ker(T ) is finite-
dimensional. Let nullity(T ) = s and let e1, . . . , es be a basis of ker(T ). By The-
orem 3.6, we can extend e1, . . . , es to a basis e1, . . . , es, f1, . . . , fr of U . Then dim(U) =
s+ r, so to prove the theorem we have to prove that dim(im(T )) = r.

Clearly T (e1), . . . , T (es), T (f1), . . . , T (fr) span im(T ), and since

T (e1) = · · · = T (es) = 0V

this implies that T (f1), . . . , T (fr) span im(T ). We shall show that T (f1), . . . , T (fr) are
linearly independent.

Suppose that, for some scalars αi, we have

α1T (f1) + · · ·+ αrT (fr) = 0V .

Then T (α1f1 + · · · + αrfr) = 0V , so α1f1 + · · · + αrfr ∈ ker(T ). But e1, . . . , es is a
basis of ker(T ), so there exist scalars βi with

α1f1 + · · ·+ αrfr = β1e1 + · · ·+ βses =⇒ α1f1 + · · ·+ αrfr − β1e1 − · · · − βses = 0U .

But we know that e1, . . . , es, f1, . . . , fr form a basis of U , so they are linearly inde-
pendent, and hence

α1 = · · · = αr = β1 = · · · = βs = 0,

and we have proved that T (f1), . . . , T (fr) are linearly independent.
Since T (f1), . . . , T (fr) both span im(T ) and are linearly independent, they form a

basis of im(U), and hence dim(im(T )) = r, which completes the proof.

Examples Once again, we consider examples 1–7 above. Since we only want to deal
with finite-dimensional spaces, we restrict to an (n+1)-dimensional space K[x]≤n in
examples 4 and 5, that is, we consider T : R[x]≤n → R[x]≤n, Sα : K[x]≤n → K[x]≤n,
and Eα : K[x]≤n → K correspondingly. Let n = dim(U) = dim(V ) in 6 and 7.

Example rank(T ) nullity(T ) dim(U)

1 2 1 3
2 2 0 2
3 2 0 2
4 n 1 n+ 1
5 Sα n+ 1 0 n+ 1
5 Eα 1 n n+ 1
6 n 0 n
7 0 n n



MA106 Linear Algebra 19

Corollary 5.6. Let T : U → V be a linear map, and suppose that dim(U) = dim(V ) =
n. Then the following properties of T are equivalent:

(i) T is surjective;

(ii) rank(T ) = n;

(iii) nullity(T ) = 0;

(iv) T is injective;

(v) T is bijective;

Proof. That T is surjective means precisely that im(T ) = V , so (i) ⇒ (ii). But if
rank(T ) = n, then dim(im(T )) = dim(V ) so (by Corollary 3.9) a basis of im(T ) is a
basis of V , and hence im(T ) = V . Thus (ii) ⇔ (i).

That (ii) ⇔ (iii) follows directly from Theorem 5.5.
The equivalence (iii) ⇔ (iv) is Proposition 5.4.
Finally, (v) is equivalent to (i) and (iv), which we have shown are equivalent to

each other.

Definition. If the conditions in the above corollary are met, then T is called a non-
singular linear map. Otherwise, T is called singular. Notice that the terms singular
and non-singular are only used for linear maps T : U → V for which U and V have
the same dimension.

5.4 Operations on linear maps

We can define the operations of addition, scalar multiplication and composition on
linear maps.

Let T1 : U → V and T2 : U → V be two linear maps, and let α ∈ K be a scalar.

Definition (Addition of linear maps). We define a map

T1 + T2 : U → V

by the rule (T1 + T2)(u) = T1(u) + T2(u) for u ∈ U .

Definition (Scalar multiplication of linear maps). We define a map

αT1 : U → V

by the rule (αT1)(u) = αT1(u) for u ∈ U .

Now let T1 : U → V and T2 : V →W be two linear maps.

Definition (Composition of linear maps). We define a map

T2T1 : U →W

by (T2T1)(u) = T2(T1(u)) for u ∈ U .

In particular, we define T 2 = TT and T i+1 = T iT for i > 2 whenever T is a map
from U to itself.

It is routine to check that T1 + T2, αT1 and T2T1 are themselves all linear maps
(but you should do it!).

For fixed vector spaces U and V over K, we denote by HomK(U, V ) the set
of all linear maps from U to V . Note that the operations of addition and scalar
multiplication on elements of HomK(U, V ), i.e. linear maps, that we just defined
make HomK(U, V ) into a vector space over K.
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Given a vector space U over a field K, the vector space U∗ = HomK(U,K) plays
a special role. It is often called the dual space or the space of covectors of U . One can
think of coordinates as elements of U∗. Indeed, let ei be a basis of U . Every x ∈ U
can be uniquely written as

x = α1e1 + . . . αnen, αi ∈ K.

The elements αi depend on x as well as on a choice of the basis, so for each i one can
write the coordinate function

ei : U → K, ei(x) = αi.

It is routine to check that ei is a linear map, and indeed the functions ei form a basis
of the dual space U∗.

6 Matrices

The material in this section will be familiar to many of you already, at least when K
is the field of real numbers.

Definition. Let K be a field and m,n ∈ N. An m× n matrix A over K is an m× n
rectangular array of numbers (i.e. scalars) in K. The entry in row i and column j is
often written αij . (We use the corresponding Greek letter.) We write A = (αij) to
make things clear.

For example, we could take

K = R, m = 3, n = 4, A = (αij) =





2 −1 −π 0
3 −3/2 0 6

−1.23 0 1010 0



 ,

and then α13 = −π, α33 = 1010, α34 = 0, and so on.
Having defined what matrices are, we want to be able add them, multiply them

by scalars, and multiply them by each other. You probably already know how to do
this, but we will define these operations anyway.

Definition (Addition of matrices). Let A = (αij) and B = (βij) be two m × n
matrices over K. We define A + B to be the m × n matrix C = (γij), where γij =
αij + βij for all i, j.

Example.
(

1 3
0 2

)

+

(

−2 −3
1 −4

)

=

(

−1 −0
1 −2

)

.

Definition (Scalar multiplication of matrices). Let A = (αij) be an m × n matrix
over K and let β ∈ K be a scalar. We define the scalar multiple βA to be the m× n
matrix C = (γij), where γij = βαij for all i, j.

Definition (Multiplication of matrices). Let A = (αij) be an l ×m matrix over K
and let B = (βij) be an m × n matrix over K. The product AB is an l × n matrix
C = (γij) where, for 1 ≤ i ≤ l and 1 ≤ j ≤ n,

γij =
m
∑

k=1

αikβkj = αi1β1j + αi2β2j + · · ·+ αimβmj .

It is essential that the number m of columns of A is equal to the number of rows of
B; otherwise AB makes no sense.
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If you are familiar with scalar products of vectors, note also that γij is the scalar
product of the ith row of A with the jth column of B.

Example. Let

A =

(

2 3 4
1 6 2

)

, B =





2 6
3 2
1 9



 .

Then

AB =

(

2× 2 + 3× 3 + 4× 1 2× 6 + 3× 2 + 4× 9
1× 2 + 6× 3 + 2× 1 1× 6 + 6× 2 + 2× 9

)

=

(

17 54
22 36

)

,

BA =





10 42 20
8 21 16
11 57 22



 .

Let C =

(

2 3 1
6 2 9

)

. Then AC and CA are not defined.

Let D =

(

1 2
0 1

)

. Then AD is not defined, but DA =

(

4 15 8
1 6 2

)

.

Proposition 6.1. Matrices satisfy the following laws whenever the sums and products
involved are defined:

(i) A+B = B +A;

(ii) (A+B)C = AC +BC;

(iii) C(A+B) = CA+ CB;

(iv) (λA)B = λ(AB) = A(λB);

(v) (AB)C = A(BC).

Proof. These are all routine checks that the entries of the left-hand sides are equal
to the corresponding entries on the right-hand side. Let us do (v) as an example.

Let A, B and C be l ×m, m × n and n × p matrices, respectively. Then AB =
D = (δij) is an l×n matrix with δij =

∑m
s=1 αisβsj , and BC = E = (εij) is an m× p

matrix with εij =
∑n

t=1 βitγtj . Then (AB)C = DC and A(BC) = AE are both l× p
matrices, and we have to show that their coefficients are equal. The (i, j)-coefficient
of DC is

n
∑

t=1

δitγtj =
n
∑

t=1

(
m
∑

s=1

αisβst)γtj =
m
∑

s=1

αis(
n
∑

t=1

βstγtj) =
m
∑

s=1

αisεsj

which is the (i, j)-coefficient of AE. Hence (AB)C = A(BC).

There are some useful matrices to which we give names.

Definition. The m× n zero matrix 0mn over any field K has all of its entries equal
to 0.

Definition. The n × n identity matrix In = (αij) over any field K has αii = 1 for
1 ≤ i ≤ n, but αij = 0 when i 6= j.

Example.

I1 = (1), I2 =

(

1 0
0 1

)

, I3 =





1 0 0
0 1 0
0 0 1



 .

Note that InA = A for any n×m matrix A and AIn = A for any m× n matrix A.
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The set of all m×n matrices over K will be denoted by Km,n. Note that Km,n is
itself a vector space over K using the operations of addition and scalar multiplication
defined above, and it has dimension mn. (This should be obvious – is it?)

A 1 × n matrix is called a row vector. We will regard K1,n as being the same as
Kn.

A n × 1 matrix is called a column vector. We will denote the the space Kn,1 of
all column vectors by Kn,1. In matrix calculations, we will use Kn,1 more often than
Kn.

7 Linear transformations and matrices

We shall see in this section that, for fixed choice of bases, there is a very natural
one-one correspondence between linear maps and matrices, such that the operations
on linear maps and matrices defined in Chapters 5 and 6 also correspond to each
other. This is perhaps the most important idea in linear algebra, because it enables
us to deduce properties of matrices from those of linear maps, and vice-versa. It also
explains why we multiply matrices in the way we do.

7.1 Setting up the correspondence

Let T : U → V be a linear map, where dim(U) = n, dim(V ) = m. Suppose that we
are given a basis E = {e1, . . . , en} of U and a basis F = {f1, . . . , fm} of V .

Now, for 1 ≤ j ≤ n, the vector T (ej) lies in V , so T (ej) can be written uniquely
as a linear combination of f1, . . . , fm. Let

T (e1) = α11f1 + α21f2 + · · ·+ αm1fm

T (e2) = α12f1 + α22f2 + · · ·+ αm2fm

· · ·

T (en) = α1nf1 + α2nf2 + · · ·+ αmnfm

where the coefficients αij ∈ K (for 1 ≤ i ≤ m, 1 ≤ j ≤ n) are uniquely determined.
Putting it more compactly, we define scalars αij by

T (ej) =
m
∑

i=1

αijfi for 1 ≤ j ≤ n.

The coefficients αij form an m× n matrix

A =











α11 α12 · · · α1n

α21 α22 · · · α2n
...

...
. . .

...
αm1 αm2 · · · αmn











over K.

Definition. This matrix A is called the matrix of the linear map T with respect to
the chosen bases E of U and F of V . We will denote A by [F, T,E], or [FTE].

In general, different choice of bases gives different matrices. We shall address this
issue later in the course, in Section 11.

Notice the role of individual columns in A. The jth column of A consists of the
coordinates of T (ej) with respect to the basis f1, . . . , fm of V .
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Theorem 7.1. Let U, V be vector spaces over K of dimensions n,m, respectively.
Then, for a given choice of bases of U and V , there is a one-one correspondence
between the set HomK(U, V ) of linear maps U → V and the set Km,n of m × n
matrices over K.

Proof. As we saw above, any linear map T : U → V determines an m × n matrix A
over K.

Conversely, let A = (αij) be an m × n matrix over K. Then, by the existence
statement in Proposition 5.2, there is a linear map T : U → V with T (ej) =

∑m
i=1 αijfi

for 1 ≤ j ≤ n. This shows that the above correspondence is onto. Moreover, by the
uniqueness statement in Proposition 5.2, this correspondence is injective. Thus it is
one-one.

Examples Once again, we consider our examples from Section 5.

1. T : R3 → R2, T (α, β, γ) = (α, β). Usually, we choose the standard bases of Km

and Kn, which in this case are e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) and
f1 = (1, 0), f2 = (0, 1). We have T (e1) = f1, T (e2) = f2, T (e3) = 0, and the
matrix is

(

1 0 0
0 1 0

)

.

But suppose we chose different bases, say e1 = (1, 1, 1), e2 = (0, 1, 1), e3 =
(1, 0, 1), and f1 = (0, 1), f2 = (1, 0). Then we have T (e1) = (1, 1) = f1 + f2,
T (e2) = (0, 1) = f1, T (e3) = (1, 0) = f2, and the matrix is

(

1 1 0
1 0 1

)

.

2. T : R2 → R2, T is a rotation through θ anti-clockwise about the origin. We saw
that T (1, 0) = (cos θ, sin θ) and T (0, 1) = (− sin θ, cos θ), so the matrix using
the standard bases is

(

cos θ − sin θ
sin θ cos θ

)

.

3. T : R2 → R2, T is a reflection through the line through the origin making an
angle θ/2 with the x-axis. We saw that T (1, 0) = (cos θ, sin θ) and T (0, 1) =
(sin θ,− cos θ), so the matrix using the standard bases is

(

cos θ sin θ
sin θ − cos θ

)

.

4. This time we take the differentiation map T from R[x]≤n to R[x]≤n−1. Then,
with respect to the bases 1, x, x2, . . . , xn and 1, x, x2, . . . , xn−1 of R[x]≤n and
R[x]≤n−1, respectively, the matrix of T is



















0 1 0 0 · · · 0 0
0 0 2 0 · · · 0 0
0 0 0 3 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · n− 1 0
0 0 0 0 · · · 0 n



















.
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5. Let Sα : K[x]≤n → K[x]≤n be the shift. With respect to the basis 1, x, x2, . . . , xn

of K[x]≤n, we calculate Sα(x
n) = (x − α)n. The binomial formula gives the

matrix of Sα,


















1 −α α2 · · · (−1)nαn

0 1 −2α · · · (−1)n−1nαn−1

0 0 1 · · · (−1)n−2 n(n−1)
2 αn−2

...
...

...
. . .

...
0 0 0 · · · −nα
0 0 0 · · · 1



















.

In the same basis of K[x]≤n and the basis 1 of K, Eα(x
n) = αn. The matrix of

Eα is
(

1 α α2 · · · αn−1 αn
)

.

6. T : V → V is the identity map. Notice that U = V in this example. Provided
that we choose the same basis for U and V , then the matrix of T is the n × n
identity matrix In. We shall be considering the situation where we use different
bases for the domain and range of the identity map in Section 11.

7. T : U → V is the zero map. The matrix of T is the m × n zero matrix 0mn,
regardless of what bases we choose. (The coordinates of the zero vector are all
zero in any basis.)

We now connect how a linear transformation acts on elements of a vector space
to how its matrix acts on their coordinates.

For the given basis e1, . . . , en of U and a vector u = λ1e1 + · · ·+ λnen ∈ U , let u
denote the column vector

u =











λ1
λ2
...
λn











∈ Kn,1,

whose entries are the coordinates of u with respect to that basis. Similarly, for the
given basis f1, . . . , fm of V and a vector v = µ1f1 + · · ·+ µmfm ∈ V , let v denote the
column vector

v =











µ1
µ2
...
µm











∈ Km,1

whose entries are the coordinates of v with respect to that basis.

Proposition 7.2. Let T : U → V be a linear map, let E be a basis of U , and F a
basis of V . Let u and v be the column vectors of coordinates of two vectors u ∈ U
and v ∈ V with respect to the basis E and F respectively. Then T (u) = v if and only
if [F, T,E]u = v. In other words, T (u) = [F, T,E]u.

Proof. Writing the entries of the matrix [F, T,E] as αij , we have

T (u) = T (
n
∑

j=1

λjej) =
n
∑

j=1

λjT (ej) =
n
∑

j=1

λj(
m
∑

i=1

αijfi) =
m
∑

i=1

(
n
∑

j=1

αijλj)fi =
m
∑

i=1

µifi,

where µi =
∑n

j=1 αijλj is the entry in the ith row of the column vector [F, T,E]u.
This proves the result.
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What is this proposition really telling us? One way of looking at it is this. Choos-
ing a basis for U gives every vector in U a unique set of coordinates. Choosing a
basis for V gives every vector in V a unique set of coordinates. Now applying the
linear transformation T to u ∈ U is “the same” as multiplying its column vector
of coordinates by the matrix [F, T,E] representing T , as long as we interpret the
resulting column vector as coordinates in V with respect to our chosen basis.

Of course, choosing different bases will change the matrix [F, T,E], and will change
the coordinates of both u and v. But it will change all of these quantities in exactly
the right way that the theorem still holds.

7.2 The correspondence between operations on linear maps and

matrices

Let U, V andW be vector spaces over the same fieldK, let dim(U) = n, dim(V ) = m,
dim(W ) = l, and choose fixed bases e1, . . . , en of U and f1, . . . , fm of V , and g1, . . . ,gl
of W . All matrices of linear maps between these spaces will be written with respect
to these bases.

We have defined addition and scalar multiplication of linear maps, and we have
defined addition and scalar multiplication of matrices. We have also defined a way
to associate a matrix to a linear map. It turns out that all these operations behave
together in the way we might hope.

Proposition 7.3. 1. Let T1, T2 : U → V be linear maps with corresponding matrices
A,B respectively. Then the matrix of T1+T2 is A+B. In other words, we have

[F, T1 + T2, E] = [F, T1, E] + [F, T2, E].

2. Let T : U → V be a linear map with corresponding matrix A and let λ ∈ K be
a scalar. Then the matrix of λT is λA. In other words, we have

[F, λT,E] = λ[F, T,E].

Proof. These are both straightforward to check, using the definitions, as long as you
keep your wits about you. Checking them is a useful exercise, and you should do
it.

Note that the above two properties imply that the natural correspondence between
linear maps and matrices is actually itself a linear map from HomK(U, V ) to Km,n.

Composition of linear maps corresponds to matrix multiplication. This time the
correspondence is less obvious, and we state it as a theorem.

Theorem 7.4. Let T1 : V →W and T2 : U → V be linear maps. Fix bases E,F and
G of the spaces U, V and W respectively, and let A = (αij) = [G, T1, F ] and B =
(βij) = [F, T2, E] be the corresponding matrices. Then the matrix of the composite
map T1T2 : U →W is AB. In other words, we have

[G, T1T2, E] = [G, T1, F ][F, T2, E].

Proof. Let n := dim(U),m := dim(V ), l := dim(W ). Let AB be the l × n matrix
(γij). Then by the definition of matrix multiplication, we have γik =

∑m
j=1 αijβjk for

1 ≤ i ≤ l, 1 ≤ k ≤ n.
Let us calculate the matrix of T1T2. We have

T1T2(ek) = T1(T2(ek)) = T1(
m
∑

j=1

βjkfj) =
m
∑

j=1

βjkT1(fj) =
m
∑

j=1

βjk

l
∑

i=1

αijgi

=
l

∑

i=1

(
m
∑

j=1

αijβjk)gi =
l

∑

i=1

γikgi,
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so the matrix of T1T2 is (γik) = AB as claimed.

Exercise: Give another proof of the last theorem using Proposition 7.2.

Examples Let us look at some examples of matrices corresponding to the compos-
ition of two linear maps.

1. Let Rθ : R
2 → R2 be a rotation through an angle θ anti-clockwise about the

origin. We have seen that the matrix of Rθ (using the standard basis) is
(

cos θ − sin θ
sin θ cos θ

)

. Now clearly Rθ followed by Rφ is equal to Rθ+φ. We can

check the corresponding result for matrices:

(

cosφ − sinφ
sinφ cosφ

)(

cos θ − sin θ
sin θ cos θ

)

=

(

cosφ cos θ − sinφ sin θ − cosφ sin θ − sinφ cos θ
sinφ cos θ + cosφ sin θ − sinφ sin θ + cosφ cos θ

)

=

(

cos(φ+ θ) − sin(φ+ θ)
sin(φ+ θ) cos(φ+ θ)

)

.

Note that in this case T1T2 = T2T1. This actually gives an alternative way of
deriving the addition formulae for sin and cos.

2. Let Rθ be as in Example 1, and let Mθ : R
2 → R2 be a reflection through a line

through the origin at an angle θ/2 to the x-axis. We have seen that the matrix

of Mθ is

(

cos θ sin θ
sin θ − cos θ

)

. What is the effect of doing first Rθ and then Mφ? In

this case, it might be easier (for some people) to work it out using the matrix
multiplication! We have

(

cosφ sinφ
sinφ − cosφ

)(

cos θ − sin θ
sin θ cos θ

)

=

(

cosφ cos θ + sinφ sin θ − cosφ sin θ + sinφ cos θ
sinφ cos θ − cosφ sin θ − sinφ sin θ − cosφ cos θ

)

=

(

cos(φ− θ) sin(φ− θ)
sin(φ− θ) − cos(φ− θ)

)

,

which is the matrix of Mφ−θ.

We get a different result if we do first Mφ and then Rθ. What do we get then?

7.3 Linear equations and the inverse image problem

The study and solution of systems of simultaneous linear equations is the main motiv-
ation behind the development of the theory of linear algebra and of matrix operations.
Let us consider a system of m equations in n unknowns x1, x2 . . . xn, where m,n ≥ 1.



















α11x1 + α12x2 + · · · + α1nxn = β1
α21x1 + α22x2 + · · · + α2nxn = β2

...
αm1x1 + αm2x2 + · · · + αmnxn = βm

(1)

All coefficients αij and βi belong to K. Solving this system means finding all collec-
tions x1, x2 . . . xn ∈ K such that the equations (1) hold.
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Let A = (αij) ∈ Km,n be the m× n matrix of coefficients. The crucial step is to
introduce the column vectors

x =











x1
x2
...
xn











∈ Kn,1 and b =











β1
β2
...
βm











∈ Km,1.

This allows us to rewrite system (1) as a single equation

Ax = b (2)

where the coefficient A is a matrix, the right hand side b is a vector in Km,1 and the
unknown x is a vector Kn,1.

Using the notation of linear maps, we have just reduced solving a system of linear
equations to the inverse image problem. That is, given a linear map T : U → V , and
a fixed vector v ∈ V , find all u ∈ U such that T (u) = v.

In fact, these two problems are equivalent! In the opposite direction, let us first
forget all about A, x and b, and suppose that we are given an inverse image problem
to solve. Choose bases E of U and F of V and denote by A the corresponding matrix
[F, T,E]. Also denote the row vector of coordinates of u (with respect to E) by x
and the row vector of coordinates of v (with respect to F ) by b. Proposition 7.2 then
says that T (u) = v if and only if Ax = b. This reduces the inverse image problem
to solving a system of linear equations.

Let us make several easy observations about the inverse image problem.

The case when v = 0 or, equivalently when βi = 0 for 1 ≤ i ≤ m, is called
the homogeneous case. Here the set of solutions is {u ∈ U | T (u) = 0}, which is
precisely the kernel ker(T ) of T . The corresponding set of column vectors x ∈ Kn,1

with Ax = 0 is called the nullspace of the matrix A. These column vectors are the
coordinates of the vectors in the kernel of T , with respect to our chosen basis for U .
So the nullity of A is the dimension of its nullspace.

In general, it is easy to see (and you should work out the details) that if x is one
solution to a system of equations, then the complete set of solutions is equal to

x+ nullspace(A) = {x+ y | y ∈ nullspace(A)}.

It is possible that there are no solutions at all; this occurs when v 6∈ im(T ). If
there are solutions, then there is a unique solution precisely when ker(T ) = {0}, or
equivalently when nullspace(A) = {0}. If the fieldK is infinite and there are solutions
but ker(T ) 6= {0}, then there are infinitely many solutions.

Now we would like to develop methods for solving the inverse image problem.

8 Elementary operations and the rank of a matrix

8.1 Gauss transformations

There are two standard high school methods for solving linear systems: the sub-
stitution method (where you express variables in terms of the other variables and
substitute the result in the remaining equations) and the elimination method (some-
times called the Gauss method). The latter is usually faster, so we will concentrate
on it. Let us recall how it is done.

Examples Here are some examples of solving systems of linear equations by the
elimination method.
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1.

2x+ y = 1 (1)

4x+ 2y = 1 (2)

Replacing (2) by (2) − 2 × (1) gives 0 = −1. This means that there are no
solutions.

2.

2x+ y = 1 (1)

4x+ y = 1 (2)

Replacing (2) by (2) − (1) gives 2x = 0, and so x = 0. Replacing (1) by
(1)− 2× (new 2) gives y = 1. Thus, (0, 1) is a unique solution.

3.

2x+ y = 1 (1)

4x+ 2y = 2 (2)

This time (2)− 2× (1) gives 0 = 0, so (2) is redundant.

After reduction, there is no equation with leading term y, which means that
y can take on any value, say y = α. The first equation determines x in terms
of y, giving x = (1 − α)/2. So the general solution is (x, y) = ((1 − α)/2, α),
meaning that for each α ∈ R we find one solution (x, y). There are infinitely
many solutions.

Notice also that one solution is (x, y) = (1/2, 0), and the general solution can
be written as (x, y) = (1/2, 0) +α(−1/2, 1), where α(−1/2, 1) is the solution of
the corresponding homogeneous system 2x+ y = 0; 4x+ 2y = 0.

4.
x + y + z = 1 (1)
x + z = 2 (2)
x − y + z = 3 (3)
3x + y + 3z = 5 (4)

Now replacing (2) by (2) − (1) and then multiplying by −1 gives y = −1.
Replacing (3) by (3) − (1) gives −2y = 2, and replacing (4) by (4) − 3 × (1)
also gives −2y = 2. So (3) and (4) both then reduce to 0 = 0, and they are
redundant.

z does not occur as a leading term, so it can take any value, say α, and then
(2) gives y = −1 and (1) gives x = 1− y − z = 2− α, so the general solution is

(x, y, z) = (2− α,−1, α) = (2,−1, 0) + α(−1, 0, 1).

8.2 Elementary row operations

Many types of calculations with matrices can be carried out in a computationally
efficient manner by the use of certain types of operations on rows and columns. We
shall see a little later that these are really the same as the operations used in solving
sets of simultaneous linear equations.

Let A be an m × n matrix over K with rows r1, r2, . . . , rm ∈ K1,n . The three
types of elementary row operations on A are defined as follows.
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(R1) For some i 6= j, add a multiple of rj to ri.

Example:





3 1 9
4 6 7
2 5 8





r3→r3−3r1−−−−−−−→





3 1 9
4 6 7
−7 2 −19





(R2) Interchange two rows

(R3) Multiply a row by a non-zero scalar.

Example:





2 0 5
1 −2 3
5 1 2





r2→4r2−−−−−→





2 0 5
4 −8 12
5 1 2





8.3 The augmented matrix

We would like to make the process of solving a system of linear equations more
mechanical by forgetting about the variable names w, x, y, z, etc. and doing the
whole operation as a matrix calculation. For this, we use the augmented matrix of
the system of equations, which is constructed by “glueing” an extra column on the
right-hand side of the matrix representing the linear transformation, as follows. For
the system Ax = β of m equations in n unknowns, where A is the m×n matrix (αij)
is defined to be the m× (n+ 1) matrix

A =











α11 α12 · · · α1n β1
α21 α22 · · · α2n β2
...

...
. . .

...
...

αm1 αm2 · · · αmn βm











.

The vertical line in the matrix is put there just to remind us that the rightmost
column arised from the constants on the right hand side of the equations.

Let us look at the following system of linear equations over R: suppose that we
want to find all w, x, y, z ∈ R satisfying the equations.















2w − x + 4y − z = 1
w + 2x + y + z = 2
w − 3x + 3y − 2z = −1

−3w − x − 5y = −3 .

Elementary row operations on A are precisely Gauss transformations of the corres-
ponding linear system. Thus, the solution can be carried out mechanically as follows:

Matrix Operation(s)









2 −1 4 −1 1
1 2 1 1 2
1 −3 3 −2 −1

−3 −1 −5 0 −3









r1 → r1/2









1 −1/2 2 −1/2 1/2
1 2 1 1 2
1 −3 3 −2 −1

−3 −1 −5 0 −3









r2 → r2 − r1, r3 → r3 − r1, r4 → r4 + 3r1



30 10th May 2016

Matrix Operation(s)









1 −1/2 2 −1/2 1/2
0 5/2 −1 3/2 3/2
0 −5/2 1 −3/2 −3/2
0 −5/2 1 −3/2 −3/2









r3 → r3 + r2, r4 → r4 + r2









1 −1/2 2 −1/2 1/2
0 5/2 −1 3/2 3/2
0 0 0 0 0
0 0 0 0 0









r2 → 2r2/5









1 −1/2 2 −1/2 1/2
0 1 −2/5 3/5 3/5
0 0 0 0 0
0 0 0 0 0









r1 → r1 + r2/2









1 0 9/5 −1/5 4/5
0 1 −2/5 3/5 3/5
0 0 0 0 0
0 0 0 0 0









The original system has been transformed to the following equivalent system, that
is, both systems have the same solutions.

{

w + 9y/5 − z/5 = 4/5
x − 2y/5 + 3z/5 = 3/5

In a solution to the latter system, variables y and z can take arbitrary values in
R; say y = α, z = β. Then the equations tell us that w = −9α/5 + β/5 + 4/5 and
x = 2α/5− 3β/5+ 3/5 (be careful to get the signs right!), and so the complete set of
solutions is

(w, x, y, z) = (−9α/5 + β/5 + 4/5, 2α/5− 3β/5 + 3/5, α, β)

= (4/5, 3/5, 0, 0) + α(−9/5, 2/5, 1, 0) + β(1/5,−3/5, 0, 1).

8.4 Row reducing a matrix

Let A = (αij) be an m×n matrix over the field K. For the ith row, let c(i) denote the
position of the first (leftmost) non-zero entry in that row. In other words, αi,c(i) 6= 0
while αij = 0 for all j < c(i). It will make things a little easier to write if we use the
convention that c(i) = ∞ if the ith row is entirely zero.

We will describe a procedure, analogous to solving systems of linear equations
by elimination, which starts with a matrix, performs certain row operations, and
finishes with a new matrix in a special form. After applying this procedure, the
resulting matrix A = (αij) will have the following properties.

(i) All zero rows are below all non-zero rows.

(ii) Let r1, . . . , rs be the non-zero rows. Then each ri with 1 ≤ i ≤ s has 1 as its
first non-zero entry. In other words, αi,c(i) = 1 for all i ≤ s.

(iii) The first non-zero entry of each row is strictly to the right of the first non-zero
entry of the row above: that is, c(1) < c(2) < · · · < c(s).
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(iv) If row i is non-zero, then all entries below the first non-zero entry of row i are
zero: αk,c(i) = 0 for all k > i.

Definition. Amatrix satisfying properties (i)–(iv) above is said to be in upper echelon
form.

Example. The matrix we came to at the end of the previous example was in upper
echelon form.

There is a stronger version of the last property:

(v) If row i is non-zero, then all entries both above and below the first non-zero
entry of row i are zero: αk,c(i) = 0 for all k 6= i.

Definition. A matrix satisfying properties (i)–(v) is said to be in row reduced form.

An upper echelon form of a matrix will be used later to calculate the rank of
a matrix. The row reduced form (the use of the definite article is intended: this
form is, indeed, unique, though we shall not prove this) is used to solve systems of
linear equations. In this light, the following theorem says that every system of linear
equations can be solved by the Gauss (Elimination) method.

Theorem 8.1. Every matrix can be brought to row reduced form by elementary row
transformations.

Proof. We describe an algorithm to achieve this. For a formal proof, we have to
show:

(i) after termination the resulting matrix has a row reduced form;

(ii) the algorithm terminates after finitely many steps.

Both of these statements are clear from the nature of the algorithm. Make sure that
you understand why they are clear!

At any stage in the procedure we will be looking at the entry αij in a particular
position (i, j) of the matrix. We will call (i, j) the pivot position, and αij the pivot
entry. We start with (i, j) = (1, 1) and proceed as follows.

1. If αij and all entries below it in its column are zero (i.e. if αkj = 0 for all k ≥ i),
then move the pivot one place to the right, to (i, j + 1) and repeat Step 1, or
terminate if j = n.

2. If αij = 0 but αkj 6= 0 for some k > i then apply row operation (R2) to interchange
ri and rk.

3. At this stage αij 6= 0. If αij 6= 1, then apply row operation (R3) to multiply ri by
α−1
ij .

4. At this stage αij = 1. If, for any k 6= i, αkj 6= 0, then apply row operation (R1),
and subtract αkj times ri from rk.

5. At this stage, αkj = 0 for all k 6= i. If i = m or j = n then terminate. Otherwise,
move the pivot diagonally down to the right to (i+1, j+1), and go back to Step 1.

If one needs only an upper echelon form, this can done faster by replacing steps 4
and 5 with weaker and faster steps as follows.

4a. At this stage αij = 1. If, for any k > i, αkj 6= 0, then apply (R1), and subtract
αkj times ri from rk.
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5a. At this stage, αkj = 0 for all k > i. If i = m or j = n then terminate. Otherwise,
move the pivot diagonally down to the right to (i+1, j+1), and go back to Step 1.

In the example below, we find an upper echelon form of a matrix by applying the
faster algorithm. The number in the ‘Step’ column refers to the number of the step
applied in the description of the procedure above.

Example Let A =









0 0 1 2 1
2 4 2 −4 2
3 6 3 −6 3
1 2 3 3 3









.

Matrix Pivot Step Operation









0 0 1 2 1
2 4 2 −4 2
3 6 3 −6 3
1 2 3 3 3









(1, 1) 2 r1 ↔ r2









2 4 2 −4 2
0 0 1 2 1
3 6 3 −6 3
1 2 3 3 3









(1, 1) 3 r1 → r1/2









1 2 1 −2 1
0 0 1 2 1
3 6 3 −6 3
1 2 3 3 3









(1, 1) 4
r3 → r3 − 3r1
r4 → r4 − r1









1 2 1 −2 1
0 0 1 2 1
0 0 0 0 0
0 0 2 5 2









(1, 1) → (2, 2) → (2, 3) 5, 1









1 2 1 −2 1
0 0 1 2 1
0 0 0 0 0
0 0 2 5 2









(2, 3) 4 r4 → r4 − 2r2









1 2 1 −2 1
0 0 1 2 1
0 0 0 0 0
0 0 0 1 0









(2, 3) → (3, 4) 5, 2 r3 ↔ r4









1 2 1 −2 1
0 0 1 2 1
0 0 0 1 0
0 0 0 0 0









(3, 4) → (4, 5) → stop 5, 1

This matrix is now in upper echelon form.
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8.5 Elementary column operations

In analogy to elementary row operations, one can introduce elementary column oper-
ations. Let A be an m× n matrix over K with columns c1, c2, . . . , cn as above. The
three types of elementary column operations on A are defined as follows.

(C1) For some i 6= j, add a multiple of cj to ci.

Example:





3 1 9
4 6 7
2 5 8





c3→c3−3c1−−−−−−−→





3 1 0
4 6 −5
2 5 2





(C2) Interchange two columns.

(C3) Multiply a column by a non-zero scalar.

Example:





2 0 5
1 −2 3
5 1 2





c2→4c2−−−−−→





2 0 5
1 −8 3
5 4 2





Elementary column operations change a linear system and cannot be applied to
solve a system of linear equations. However, they are useful for reducing a matrix to
a very nice form.

Theorem 8.2. By applying elementary row and column operations, a matrix can be
brought into the block form

(

Is 0s,n−s
0m−s,s 0m−s,n−s

)

,

where, as in Section 6, Is denotes the s × s identity matrix, and 0kl the k × l zero
matrix.

Proof. First, use elementary row operations to reduce A to row reduced form.
Now all αi,c(i) = 1. We can use these leading entries in each row to make all the

other entries zero: for each αij 6= 0 with j 6= c(i), replace cj with cj − αijcc(i).
Finally the only nonzero entries of our matrix are αi,c(i) = 1. Now for each

number i starting from i = 1, exchange ci and cc(i), putting all the zero columns at
the right-hand side.

Definition. The matrix in Theorem 8.2 is said to be in row and column reduced
form, which is also called Smith normal form.

Let us look at an example of the second stage of procedure, that is, after reducing
the matrix to the row reduced form.

Matrix Operation









1 2 0 0 1
0 0 1 0 2
0 0 0 1 3
0 0 0 0 0









c2 → c2 − 2c1
c5 → c5 − c1









1 0 0 0 0
0 0 1 0 2
0 0 0 1 3
0 0 0 0 0









c2 ↔ c3
c5 → c5 − 3c4
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Matrix Operation









1 0 0 0 0
0 1 0 0 2
0 0 0 1 0
0 0 0 0 0









c3 ↔ c4
c5 → c5 − 2c2









1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0









Now we would like to discuss the number s that appears in Theorem 8.2, that is,
the number of non-zero entries in the Smith normal form. Does the initial matrix
uniquely determine this number? Although we have an algorithm for reducing a mat-
rix to Smith normal form, there will be other sequences of row and column operations
which also put the matrix into Smith normal form. Could we maybe end up with
a different number of non-zero entries depending on the row and column operations
used?

8.6 The rank of a matrix

Let A be an m× n matrix over K. We shall denote the m rows of A, which are row
vectors in Kn, by r1, r2, . . . , rm, and similarly, we denote the n columns of A, which
are column vectors in Km,1, by c1, c2, . . . , cn.

Definition. 1. The row space of A is the subspace of Kn spanned by the rows
r1, . . . , rm of A. The row rank of A is the dimension of the row space of A.
Equivalently, by Corollary 3.9, the row rank of A is equal to the size of the
largest linearly independent subset of r1, . . . , rm.

2. The column space ofA is the subspace ofKm,1 spanned by the columns c1, . . . , cn
of A. The column rank of A is the dimension of the column space of A. Equival-
ently, the column rank of A is equal to the size of the largest linearly independent
subset of c1, . . . , cn.

There is no obvious reason why there should be any particular relationship between
the row and column ranks, but in fact it will turn out that they are always equal.

Example Consider the matrix

A =





1 2 0 1 1
2 4 1 3 0
4 8 0 4 4





r1
r2
r3

c1 c2 c3 c4 c5

We can calculate the row and column ranks by applying the sifting process (de-
scribed in Section 3) to the row and column vectors, respectively.

Doing rows first, r1 and r2 are linearly independent, but r3 = 4r1, so the row
rank is 2.

Now doing columns, c2 = 2c1, c4 = c1+c3 and c5 = c1−2c3, so the column rank
is also 2.

We now show that the column rank is the same as the rank of the associated
linear map T .
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Theorem 8.3. Suppose that the matrix A corresponds to a linear map T : U → V .
Then rank(T ) is equal to the column rank of A.

Proof. Let e1, . . . , en be a basis of U and f1, . . . , fn a basis of V . By the definition of
the correspondence between linear maps and matrices, which we saw in Section 7.1,
the columns c1, . . . , cn of A are precisely the column vectors of coordinates of the
vectors T (e1), . . . , T (en), with respect to the basis f1, . . . , fn of V .

We claim that the vectors T (e1), . . . , T (en) span im(T ). Indeed, for every v ∈
im(T ), there is u ∈ U such that v = T (u). Writing u in terms of the basis e1, . . . , en,
and using the definition of a linear map, we have

v = T (u) = T (α1e1 + . . .+ αnen) = α1T (e1) + . . .+ αnT (en),

which means that v is a linear combination of the T (ei), proving our claim.

By Theorem 3.5, the sifted subsequence of the vectors T (ei) forms a basis of
im(T ). By definition, rank(T ) is the size of that subsequence. Similarly, the sifted
subsequence of the column vectors ci forms a basis of the column space of A. By
definition, the column rank of A is the size of that subsequence. Since the ci are pre-
cisely the column vectors corresponding to the T (ei), the sifted subsequences coincide,
proving the statement.

Theorem 8.4. Applying elementary row operations (R1), (R2) or (R3) to a matrix
does not change the row or column rank. The same is true for elementary column
operations (C1), (C2) and (C3).

Proof. We will prove first that the elementary row operations do not change either
the row rank or column rank.

The row rank of a matrix A is the dimension of the row space of A, which is the
space of linear combinations λ1r1+ · · ·+λmrm of the rows of A. It is easy to see that
(R1), (R2) and (R3) do not change this space, so they do not change the row-rank.
(But notice that the scalar in (R3) must be non-zero for this to be true!)

The column rank of A = (αij) is the size of the largest linearly independent subset
of c1, . . . , cn. Let {c1, . . . , cs} be some subset of the set {c1, . . . , cn} of columns of A.
(We have written this as though the subset consisted of the first s columns, but this
is just to keep the notation simple; it could be any subset of the columns.)

Then c1, . . . , cs are linearly dependent if and only if there exist scalars x1, . . . , xs ∈
K, not all zero, such that x1c1 + x2c2 + · · · + xscs = 0. If we write out the m
components of this vector equation, we get a system of m linear equations in the
scalars xi (which is why we have suddenly decided to call the scalars xi rather than
λi).

α11x1 + α12x2 + · · ·+ α1sxs = 0

α21x1 + α22x2 + · · ·+ α2sxs = 0

...

αm1x1 + αm2x2 + · · ·+ αmsxs = 0

Now if we perform (R1), (R2) or (R3) on A, then we perform the corresponding
operation on this system of equations. That is, we add a multiple of one equation
to another, we interchange two equations, or we multiply one equation by a non-zero
scalar. None of these operations change the set of solutions of the equations. Hence if
they have some solution with the xi not all zero before the operation, then they have
the same solution after the operation, and the other way round: if they have some
non-zero solution after the operation, then they had the same solution before the
operation. In other words, the elementary row operations do not change the linear
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dependence or independence of the set of columns {c1, . . . , cs}. Thus they do not
change the size of the largest linearly independent subset of c1, . . . , cn, so they do not
change the column rank of A.

The proof for the column operations (C1), (C2) and (C3) is the same with rows
and columns interchanged.

Corollary 8.5. Let s be the number of non-zero rows in the Smith normal form of a
matrix A (see Theorem 8.2). Then both the row rank of A and the column rank of A
are equal to s.

Proof. Since elementary operations preserve ranks, it suffices to find both ranks of a
matrix in Smith normal form. But it is easy to see that the row space is precisely the
space spanned by the first s standard vectors and hence has dimension s. Similarly
the column space has dimension s.

In particular, Corollary 8.5 establishes that the row rank is always equal to the
column rank. This allows us to forget this distinction. From now we shall just talk
about the rank of a matrix.

Corollary 8.6. The rank of a matrix A is equal to the number of non-zero rows after
reducing A to upper echelon form or row reduced form.

Proof. Firstly, note that the number of non-zero rows after reducing A to upper
echelon form is the same as the number of non-zero rows after reducing to row reduced
form.

Having row reduced A, we can reach the Smith normal form by applying some
of the column operations (C1), (C2) and (C3) (see the proof of Theorem 8.2). We
claim that these operations cannot change the number of non-zero rows. Indeed, it
is easy to check that if a row ri has at least one non-zero entry, then it will still have
at least one one non-zero entry after applying any of the operations (C1), (C2) and
(C3), and if ri has only zero entries then it will still have only zero entries after the
operation.

This means that the number of non-zero rows in the row reduced form of A equals
the number of non-zero rows in the Smith normal form of A. By Corollary 8.5 and
the remark after it, this number is the rank of A.

Corollary 8.6 gives the most efficient way of computing the rank of a matrix. For

instance, let us look at A =





1 2 0 1 1
2 4 1 3 0
4 8 1 5 2



.

Matrix Operation





1 2 0 1 1
2 4 1 3 0
4 8 1 5 2





r2 → r2 − 2r1
r3 → r3 − 4r1





1 2 0 1 1
0 0 1 1 −2
0 0 1 1 −2



 r3 → r3 − r2





1 2 0 1 1
0 0 1 1 −2
0 0 0 0 0
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Since the resulting matrix in upper echelon form has 2 nonzero rows, rank(A) = 2.

8.7 The rank criterion

The following theorem is proved in Assignment Sheet 6.

Theorem 8.7. Let A be the augmented n × (m + 1) matrix of a linear system. Let
B be the n×m matrix obtained from A by removing the last column. The system of
linear equations has a solution if and only if rank(A) = rank(B).

9 The inverse of a linear transformation and of a matrix

9.1 Definitions

Let T : U → V be a linear map. If there is a linear map T−1 : V → U with TT−1 = IV
and T−1T = IU then T is said to be invertible, and T−1 is called the inverse of T .

Similarly, if A is an n×m matrix, and A−1 an m×n matrix such that AA−1 = In
and A−1A = Im, we call A invertible, and call A−1 the inverse of A.

Lemma 9.1. Let A be a matrix corresponding to the linear map T . Then T is
invertible if and only if A is invertible. The inverses T−1 and A−1 are unique.

Proof. Recall that, under the bijection between matrices and linear maps, multiplic-
ation of matrices corresponds to composition of linear maps (Theorem 7.4). It now
follows immediately from the definitions above that invertible matrices correspond to
invertible linear maps. This establishes the first statement.

Since the inverse map of a bijection is unique, T−1 is unique. Under the bijection
between matrices and linear maps, A−1 must be the matrix of T−1. Thus, A−1 is
unique as well.

Theorem 9.2. A linear map T is invertible if and only if T is non-singular. In
particular, if T is invertible then m = n, so only square matrices can be invertible.

See Corollary 5.6 for the definition of non-singular linear maps. We may also say
that the matrix A is non-singular if T is; but by this theorem, this is equivalent to A
being invertible.

Proof. If any function T has a left and right inverse, then it must be a bijection.
Hence ker(T ) = {0} and im(T ) = V , so nullity(T ) = 0 and rank(T ) = dim(V ) = m.
But by Theorem 5.5, we have

n = dim(U) = rank(T ) + nullity(T ) = m+ 0 = m

and we see from the definition that T is non-singular.

Conversely, if n = m and T is non-singular, then by Corollary 5.6 T is a bijection,
and so it has an inverse T−1 : V → U as a function. However, we still have to
show that T−1 is a linear map. Let v1,v2 ∈ V . Then there exist u1,u2 ∈ U with
T (u1) = v1, T (u2) = v2. So T (u1+u2) = v1+v2 and hence T−1(v1+v2) = u1+u2.
If α ∈ K, then

T−1(αv1) = T−1(T (αu1)) = αu1 = αT−1(v1),

so T−1 is linear, which completes the proof.
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Example. Let A =

(

1 2 0
2 0 1

)

and B =





1 −2
0 1
−2 5



. Then AB = I2, but BA 6= I3,

so a non-square matrix can have a right inverse which is not a left inverse. However,
it can be deduced from Corollary 5.6 that if A is a square n×n matrix and AB = In
then A is non-singular, and then by multiplying AB = In on the left by A−1, we see
that B = A−1 and so BA = In.

This technique of multiplying on the left or right by A−1 is often used for trans-
forming matrix equations. If A is invertible, then AX = B ⇐⇒ X = A−1B and
XA = B ⇐⇒ X = BA−1.

Lemma 9.3. If A and B are invertible n × n matrices, then AB is invertible, and
(AB)−1 = B−1A−1.

Proof. This is clear, because ABB−1A−1 = B−1A−1AB = In.

9.2 Matrix inversion by row reduction

Two methods for finding the inverse of a matrix will be studied in this course. The
first, using row reduction, which we shall look at now, is an efficient practical method
similar to that used by computer packages. The second, using determinants, is of
more theoretical interest, and will be done later in Section 10.

First, we claim that if an n × n matrix A is invertible, then it has rank n. In-
deed, this follows by combining Lemma 9.1, Theorem 9.2, Corollary 5.6 (ii) and
Theorem 8.3. Consider the row reduced form B = (βij) of A. As we saw in Sec-
tion 8.6, we have βic(i) = 1 for 1 ≤ i ≤ n (since rank(A) = rank(B) = n), where
c(1) < c(2) < · · · < c(n), and this is only possible without any zero rows if c(i) = i
for 1 ≤ i ≤ n. Then, since all other entries in column c(i) are zero, we have B = In.
We have therefore proved:

Proposition 9.4. The row reduced form of an invertible n× n matrix A is In.

To compute A−1, we reduce A to its row reduced form In, using elementary row
operations, while simultaneously applying the same row operations, but starting with
the identity matrix In. It turns out that these operations transform In to A−1.

In practice, we might not know whether or not A is invertible before we start, but
we will find out while carrying out this procedure because, if A is not invertible, then
its rank will be less than n, and it will not row reduce to In.

First we will do an example to demonstrate the method, and then we will explain
why it works. In the table below, the row operations applied are given in the middle
column. The results of applying them to the matrix

A =





3 2 1
4 1 3
2 1 6





are given in the left column, and the results of applying them to I3 in the right
column. So A−1 should be the final matrix in the right column.

Matrix 1 Operation(s) Matrix 2





3 2 1
4 1 3
2 1 6









1 0 0
0 1 0
0 0 1





↓ r1 → r1/3 ↓
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Matrix 1 Operation(s) Matrix 2





1 2/3 1/3
4 1 3
2 1 6









1/3 0 0
0 1 0
0 0 1





... r2 → r2 − 4r1
...

↓ r3 → r3 − 2r1 ↓




1 2/3 1/3
0 −5/3 5/3
0 −1/3 16/3









1/3 0 0
−4/3 1 0
−2/3 0 1





↓ r2 → −3r2/5 ↓




1 2/3 1/3
0 1 −1
0 −1/3 16/3









1/3 0 0
4/5 −3/5 0
−2/3 0 1





... r1 → r1 − 2r2/3
...

↓ r3 → r3 + r2/3 ↓




1 0 1
0 1 −1
0 0 5









−1/5 2/5 0
4/5 −3/5 0
−2/5 −1/5 1





↓ r3 → r3/5 ↓




1 0 1
0 1 −1
0 0 1









−1/5 2/5 0
4/5 −3/5 0

−2/25 −1/25 1/5





... r1 → r1 − r3
...

↓ r2 → r2 + r3 ↓




1 0 0
0 1 0
0 0 1









−3/25 11/25 −1/5
18/25 −16/25 1/5
−2/25 −1/25 1/5





So

A−1 =





−3/25 11/25 −1/5
18/25 −16/25 1/5
−2/25 −1/25 1/5



 .

It is always a good idea to check the result afterwards. This is easier if we remove
the common denominator 25, and we can then easily check that





3 2 1
4 1 3
2 1 6









−3 11 −5
18 −16 5
−2 −1 5



 =





−3 11 −5
18 −16 5
−2 −1 5









3 2 1
4 1 3
2 1 6



 =





25 0 0
0 25 0
0 0 25





which confirms the result!

9.3 Elementary matrices

We shall now explain why the above method of calculating the inverse of a matrix
works. Each elementary row operation on a matrix can be achieved by multiplying
the matrix on the left by a corresponding matrix known as an elementary matrix.
There are three types of these, all being slightly different from the identity matrix.

1. E(n)1λ,i,j (where i 6= j) is the an n×n matrix equal to the identity, but with an
additional non-zero entry λ in the (i, j) position.

2. E(n)2i,j is the n× n identity matrix with its ith and jth rows interchanged.
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3. E(n)3λ,i (where λ 6= 0) is the n× n identity matrix with its (i, i) entry replaced
by λ.

Example. Some elementary matrices:

E(3)11
3
,1,3

=





1 0 1
3

0 1 0
0 0 1



 , E(4)22,4 =









1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0









, E(3)3−4,3 =





1 0 0
0 1 0
0 0 −4



 .

Let A be any m × n matrix. Then E(m)1λ,i,jA is the result we get by adding λ

times the jth row of A to the ith row of A. Similarly E(m)2i,jA is equal to A with its

ith and jth rows interchanged, and E(m)3λ,i is equal to A with its ith row multiplied
by λ. You need to work out a few examples to convince yourself that this is true. For
example

E(4)1−2,4,2









1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4









=









1 0 0 0
0 1 0 0
0 0 1 0
0 −2 0 1

















1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4









=









1 1 1 1
2 2 2 2
3 3 3 3
0 0 0 0









.

So, in the matrix inversion procedure, the effect of applying elementary row oper-
ations to reduce A to the identity matrix In is equivalent to multiplying A on the left
by a sequence of elementary matrices. In other words, we have ErEr−1 . . . E1A = In,
for certain elementary n × n matrices E1, . . . , Er. Since we are assuming that A
is invertible, we can multiply both sides with A−1 to obtain ErEr−1 . . . E1 = A−1.
But when we apply the same elementary row operations to In, then we end up with
ErEr−1 . . . E1In = A−1. This explains why the method works.

Notice also that the inverse of an elementary row matrix is another one of the same
type. In fact it is easily checked that the inverses of E(n)1λ,i,j , E(n)2i,j and E(n)3λ,i
are respectively E(n)1−λ,i,j , E(n)2i,j and E(n)3λ−1,i. Hence, if ErEr−1 . . . E1A = In as
in the preceding paragraph, then by using Lemma 9.3 we find that

A = (ErEr−1 . . . E1)
−1 = E−1

1 E−1
2 . . . E−1

r ,

which is itself a product of elementary matrices. We have proved:

Theorem 9.5. An invertible matrix is a product of elementary matrices.

9.4 Application to linear equations

The most familiar examples of simultaneous equations are those where we have the
same number n of equations as unknowns. However, even in that case, there is
no guarantee that there is a unique solution; there can still be zero, one or many
solutions (for instance, see examples in section 8.1). The case of a unique solution
occurs exactly when the matrix A is non-singular.

Theorem 9.6. Let A be an n× n matrix. Then

(i) the homogeneous system of equations Ax = 0 has a non-zero solution if and
only if A is singular;

(ii) the equation system Ax = β has a unique solution if and only if A is non-
singular.
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Proof. We first prove (i). The solution set of the equations is exactly nullspace(A).
Let T : Kn,1 → Kn,1 be the linear map given by v 7→ Av. It is easy to check that A
is the matrix corresponding to T with respect to the standard basis of Kn,1.

By Corollary 5.6,

nullspace(A) = ker(T ) = {0} ⇐⇒ nullity(T ) = 0 ⇐⇒ T is non-singular,

and so there are non-zero solutions if and only if T and hence A is singular.

Now (ii). If A is singular then its nullity is greater than 0 and so its nullspace is
not equal to {0}, and contains more than one vector. Either there are no solutions, or
the solution set is x+nullspace(A) for some specific solution x, in which case there is
more than one solution. Hence there cannot be a unique solution when A is singular.

Conversely, if A is non-singular, then it is invertible by Theorem 9.2, and one
solution is x = A−1β. Since the complete solution set is then x + nullspace(A), and
nullspace(A) = {0} in this case, the solution is unique.

In general, it is more efficient to solve the equations Ax = β by elementary row
operations rather than by first computing A−1 and then A−1β. However, if A−1 is
already known for some reason, then this is a useful method.

Example. Consider the system of linear equations

3x+ 2y + z = 0 (1)

4x+ y + 3z = 2 (2)

2x+ y + 6z = 6. (3)

Here A =





3 2 1
4 1 3
2 1 6



, and we computed A−1 =





−3/25 11/25 −1/5
18/25 −16/25 1/5
−2/25 −1/25 1/5



 in Sec-

tion 9. Computing A−1β with β =





0
2
6



 yields the solution x = −8/25, y = −2/25,

z = 28/25. If we had not already known A−1, then it would have been quicker to
solve the linear equations directly rather than computing A−1 first.

10 The determinant of a matrix

10.1 Definition of the determinant

Let A be an n× n matrix over the field K. The determinant of A, which is written
as det(A) or sometimes as |A|, is a certain scalar that is defined from A in a rather
complicated way. The definition for small values of n might already be familiar to
you.

n = 1 A = (α) det(A) = α

n = 2 A =

(

α11 α12

α21 α22

)

det(A) = α11α22 − α12α21

And, for n = 3, we have

A =





α11 α12 α13

α21 α22 α23

α31 α32 α33
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and

det(A) = α11

∣

∣

∣

∣

α22 α23

α32 α33

∣

∣

∣

∣

− α12

∣

∣

∣

∣

α21 α23

α31 α33

∣

∣

∣

∣

+ α13

∣

∣

∣

∣

α21 α22

α31 α32

∣

∣

∣

∣

= α11α22α33 − α11α23α32 − α12α21α33

+ α12α23α31 + α13α21α32 − α13α22α31.

Where do these formulae come from, and why are they useful?
The geometrical motivation for the determinant is that it represents area or

volume. For n = 2, consider the position vectors of two points (x1, y1), (x2, y2)
in the plane. Then, in the diagram below, the area of the parallelogram OABC
enclosed by these two vectors is

r1r2 sin(θ2 − θ1) = r1r2(sin θ2 cos θ1 − sin θ1 cos θ2) = x1y2 − x2y1 =

∣

∣

∣

∣

x1 x2
y1 y2

∣

∣

∣

∣

✏✏✏✏✏✏✏✏✶

✂
✂
✂
✂
✂
✂
✂
✂
✂
✂✍
✏✏✏✏✏✏✏✏

✂
✂
✂
✂
✂
✂
✂
✂
✂
✂

O

A = (x1, y1)

B = (x2, y2)

C

θ2
θ1

r1

r2

Similarly, when n = 3 the volume of the parallelepiped enclosed by the three position
vectors in space is equal to (plus or minus) the determinant of the 3×3 matrix defined
by the coordinates of the three points.

Now we turn to the general definition for n×n matrices. Suppose that we take the
product of n entries from the matrix, where we take exactly one entry from each row
and one from each column. Such a product is called an elementary product. There
are n! such products altogether (we shall see why shortly) and the determinant is the
sum of n! terms, each of which is plus or minus one of these elementary products.
We say that it is a sum of n! signed elementary products. You should check that this
holds in the 2 and 3-dimensional cases written out above.

Before we can be more precise about this, and determine which signs we choose for
which elementary products, we need to make a short digression to study permutations
of finite sets. A permutation of a set, which we shall take here to be the set Xn =
{1, 2, 3, . . . , n}, is simply a bijection fromXn to itself. The set of all such permutations
of Xn is called the symmetric group Sn. There are n! permutations altogether, so
|Sn| = n!.

Now an elementary product contains one entry from each row of A, so let the
entry in the product from the ith row be αiφ(i), where φ is some as-yet unknown
function from Xn to Xn. Since the product also contains exactly one entry from each
column, each integer j ∈ Xn must occur exactly once as φ(i). But this is just saying
that φ : Xn → Xn is a bijection; that is φ ∈ Sn. Conversely, any φ ∈ Sn defines an
elementary product in this way.

So an elementary product has the general form α1φ(1)α2φ(2) . . . αnφ(n) for some
φ ∈ Sn, and there are n! elementary products altogether. We want to define

det(A) =
∑

φ∈Sn

±α1φ(1)α2φ(2) . . . αnφ(n),



MA106 Linear Algebra 43

but we still have to decide which of the elementary products has a plus sign and which
has a minus sign. In fact this depends on the sign of the permutation φ, which we
must now define.

A transposition is a permutation of Xn that interchanges two numbers i and j in
Xn and leaves all other numbers fixed. It is written as (i, j). There is a theorem, which
is quite easy, but we will not prove it here because it is a theorem in Group Theory,
that says that every permutation can be written as a composite of transpositions.
For example, if n = 5, then the permutation φ defined by

φ(1) = 4, φ(2) = 5, φ(3) = 3, φ(4) = 2, φ(5) = 1

is equal to the composite (1, 4) ◦ (2, 4) ◦ (2, 5). (Remember that permutations are
functions Xn → Xn, so this means first apply the function (2, 5) (which interchanges
2 and 5) then apply (2, 4) and finally apply (1, 4).)

Definition. Now a permutation φ is said to be even, and to have sign +1, if φ is a
composite of an even number of transpositions; and φ is said to be odd, and to have
sign −1, if φ is a composite of an odd number of transpositions.

For example, the permutation φ defined on Xn above is a composite of 3 trans-
positions, so φ is odd and sign(φ) = −1. The identity permutation, which leaves all
points fixed, is even (because it is a composite of 0 transpositions).

Now at last we can give the general definition of the determinant.

Definition. The determinant of a n× n matrix A = (αij) is the scalar quantity

det(A) =
∑

φ∈Sn

sign(φ)α1φ(1)α2φ(2) . . . αnφ(n).

(Note: You might be worrying about whether the same permutation could be
both even and odd. Well, there is a moderately difficult theorem in Group Theory,
which we shall not prove here, that says that this cannot happen; in other words, the
concepts of even and odd permutation are well-defined.)

10.2 The effect of matrix operations on the determinant

Theorem 10.1. Elementary row operations affect the determinant of a matrix as
follows.

(i) det(In) = 1.

(ii) Let B result from A by applying (R2) (interchanging two rows). Then det(B) =
− det(A).

(iii) If A has two equal rows then det(A) = 0.

(iv) Let B result from A by applying (R1) (adding a multiple of one row to another).
Then det(B) = det(A).

(v) Let B result from A by applying (R3) (multiplying a row by a scalar λ). Then
det(B) = λ det(A).

Proof. (i) If A = In then αij = 0 when i 6= j. So the only non-zero elementary
product in the sum occurs when φ is the identity permutation. Hence det(A) =
α11α22 . . . αnn = 1.
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(ii) To keep the notation simple, we shall suppose that we interchange the first two
rows, but the same argument works for interchanging any pair of rows. Then if
B = (βij), we have β1j = α2j and β2j = α1j for all j. Hence

det(B) =
∑

φ∈Sn

sign(φ)β1φ(1)β2φ(2) . . . βnφ(n)

=
∑

φ∈Sn

sign(φ)α1φ(2)α2φ(1)α3φ(3) . . . αnφ(n).

For φ ∈ Sn, let ψ = φ ◦ (1, 2), so φ(1) = ψ(2) and φ(2) = ψ(1), and sign(ψ) =
− sign(φ). Now, as φ runs through all permutations in Sn, so does ψ (but in a
different order), so summing over all φ ∈ Sn is the same as summing over all
ψ ∈ Sn. Hence

det(B) =
∑

φ∈Sn

− sign(ψ)α1ψ(1)α2ψ(2) . . . αnψ(n)

=
∑

ψ∈Sn

− sign(ψ)α1ψ(1)α2ψ(2) . . . αnψ(n) = − det(A).

(iii) Again to keep notation simple, assume that the equal rows are the first two.
Using the same notation as in (ii), namely ψ = φ ◦ (1, 2), the two elementary
products:

α1ψ(1)α2ψ(2) . . . αnψ(n) and α1φ(1)α2φ(2) . . . αnφ(n)

are equal. This is because α1ψ(1) = α2ψ(1) (first two rows equal) and α2ψ(1) =
α2φ(2) (because φ(2) = ψ(1)); hence α1ψ(1) = α2φ(2). Similarly α2ψ(2) = α1φ(1)

and the two products differ by interchanging their first two terms. But sign(ψ) =
− sign(φ) so the two corrresponding signed products cancel each other out. Thus
each signed product in det(A) cancels with another and the sum is zero.

(iv) Again, to simplify notation, suppose that we replace the second row r2 by r2 +
λr1 for some λ ∈ K. Then

det(B) =
∑

φ∈Sn

sign(φ)α1φ(1)(α2φ(2) + λα1φ(2))α3φ(3) . . . αnφ(n)

=
∑

φ∈Sn

sign(φ)α1φ(1)α2φ(2) . . . αnφ(n)

+ λ
∑

φ∈Sn

sign(φ)α1φ(1)α1φ(2) . . . αnφ(n).

Now the first term in this sum is det(A), and the second is λ det(C), where C is
a matrix in which the first two rows are equal. Hence det(C) = 0 by (iii), and
det(B) = det(A).

(v) Easy. Note that this holds even when the scalar λ = 0.

Definition. A matrix is called upper triangular if all of its entries below the main
diagonal are zero; that is, (αij) is upper triangular if αij = 0 for all i > j.

The matrix is called diagonal if all entries not on the main diagonal are zero; that
is, αij = 0 for i 6= j.

Example.





3 0 −1/2
0 −1 −11
0 0 −2/5



 is upper triangular, and





0 0 0
0 17 0
0 0 −3



 is diagonal.
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Corollary 10.2. If A = (αij) is upper triangular, then det(A) = α11α22 . . . αnn is
the product of the entries on the main diagonal of A.

Proof. This is not hard to prove directly from the definition of the determinant.
Alternatively, we can apply row operations (R1) to reduce the matrix to row reduced
form. If any of the diagonal elements of A were 0, then the row reduced form has
a zero row and hence has zero determinant. Otherwise, the row reduced form is a
diagonal matrix with the identity, and the the result follows from parts (i) and (v) of
the theorem.

The above theorem and corollary provide the most efficient way of computing
det(A), at least for n ≥ 3. (For n = 2, it is easiest to do it straight from the
definition.) Use row operations (R1) and (R2) to reduce A to upper triangular form,
keeping track of changes of sign in the determinant resulting from applications of
(R2), and then use Corollary 10.2.

Example.
∣

∣

∣

∣

∣

∣

∣

∣

0 1 1 2
1 2 1 1
2 1 3 1
1 2 4 2

∣

∣

∣

∣

∣

∣

∣

∣

r2↔r1= −

∣

∣

∣

∣

∣

∣

∣

∣

1 2 1 1
0 1 1 2
2 1 3 1
1 2 4 2

∣

∣

∣

∣

∣

∣

∣

∣

r3→r3−2r1= −

∣

∣

∣

∣

∣

∣

∣

∣

1 2 1 1
0 1 1 2
0 −3 1 −1
1 2 4 2

∣

∣

∣

∣

∣

∣

∣

∣

r4→r4−r1= −

∣

∣

∣

∣

∣

∣

∣

∣

1 2 1 1
0 1 1 2
0 −3 1 −1
0 0 3 1

∣

∣

∣

∣

∣

∣

∣

∣

r3→r3+3r2= −

∣

∣

∣

∣

∣

∣

∣

∣

1 2 1 1
0 1 1 2
0 0 4 5
0 0 3 1

∣

∣

∣

∣

∣

∣

∣

∣

r4→r4−3r3/4
= −

∣

∣

∣

∣

∣

∣

∣

∣

1 2 1 1
0 1 1 2
0 0 4 5
0 0 0 −11

4

∣

∣

∣

∣

∣

∣

∣

∣

= 11

We could have been a little more clever, and stopped the row reduction one step
before the end, noticing that the determinant was equal to | 4 5

3 1 | = 11.

Definition. Let A = (αij) be an m× n matrix. We define the transpose AT of A to
be the n×m matrix (βij), where βij = αji for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

For example,

(

1 3 5
−2 0 6

)T

=





1 −2
3 0
5 6



 .

Theorem 10.3. Let A = (αij) be an n× n matrix. Then det(AT) = det(A).

Proof. Let AT = (βij) where βij = αji. Then

det(AT) =
∑

φ∈Sn

sign(φ)β1φ(1)β2φ(2) . . . βnφ(n)

=
∑

φ∈Sn

sign(φ)αφ(1)1αφ(2)2 . . . αφ(n)n.

Now, by rearranging the terms in the elementary product, we have

αφ(1)1αφ(2)2 . . . αφ(n)n = α1φ−1(1)α2φ−1(2) . . . αnφ−1(n),

where φ−1 is the inverse permutation to φ. Notice also that if φ is a composite
τ1 ◦ τ2 ◦ · · · ◦ τr of transpositions τi, then φ

−1 = τr ◦ · · · ◦ τ2 ◦ τ1 (because each τi ◦ τi
is the identity permutation). Hence sign(φ) = sign(φ−1). Also, summing over all
φ ∈ Sn is the same as summing over all φ−1 ∈ Sn, so we have

det(AT) =
∑

φ∈Sn

sign(φ)α1φ−1(1)α2φ−1(2) . . . αnφ−1(n)

=
∑

φ−1∈Sn

sign(φ−1)α1φ−1(1)α2φ−1(2) . . . αnφ−1(n) = det(A).
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If you find proofs like the above, where we manipulate sums of products, hard to
follow, then it might be helpful to write it out in full in a small case, such as n = 3.
Then

det(AT) = β11β22β33 − β11β23β32 − β12β21β33

+ β12β23β31 + β13β21β32 − β13β22β31

= α11α22α33 − α11α32α23 − α21α12α33

+ α21α32α13 + α31α12α23 − α31α22α13

= α11α22α33 − α11α23α32 − α12α21α33

+ α12α23α31 + α13α21α32 − α13α22α31

= det(A).

Corollary 10.4. All of Theorem 10.1 remains true if we replace rows by columns.

Proof. This follows from Theorems 10.1 and 10.3, because we can apply column
operations to A by transposing it, applying the corresponding row operations, and
then re-transposing it.

We are now ready to prove one of the most important properties of the determ-
inant.

Theorem 10.5. For an n× n matrix A, det(A) = 0 if and only if A is singular.

Proof. A can be reduced to row reduced echelon form by using row operations (R1),
(R2) and (R3). By Theorem 8.4, none of these operations affect the rank of A,
and so they do not affect whether or not A is singular (remember ‘singular’ means
rank(A) < n; see definition after Corollary 5.6). By Theorem 10.1, they do not affect
whether or not det(A) = 0. So we can assume that A is in row reduced form.

Then rank(A) is the number of non-zero rows of A, so if A is singular then it has
some zero rows. But then det(A) = 0. On the other hand, if A is nonsingular then,
as we saw in Section 9.2, the fact that A is in row reduced form implies that A = In,
so det(A) = 1 6= 0.

10.3 The determinant of a product

Example. Let A =

(

1 2
3 2

)

and B =

(

−1 −1
2 0

)

. Then det(A) = −4 and det(B) = 2.

We have A+B =

(

0 1
5 2

)

and det(A+B) = −5 6= det(A)+det(B). In fact, in general

there is no simple relationship between det(A+B) and det(A), det(B).

However, AB =

(

3 −1
1 −3

)

, and det(AB) = −8 = det(A) det(B).

In this subsection, we shall prove that this simple relationship holds in general.
Recall from Section 9.3 the definition of an elementary matrix E, and the property

that if we multiply a matrix B on the left by E, then the effect is to apply the
corresponding elementary row operation to B. This enables us to prove:

Lemma 10.6. If E is an n× n elementary matrix, and B is any n× n matrix, then
det(EB) = det(E) det(B).

Proof. E is one of the three types E(n)1λ,ij , E(n)2ij or E(n)3λ,i, and multiplying B on
the left by E has the effect of applying (R1), (R2) or (R3) to B, respectively. Hence,
by Theorem 10.1, det(EB) = det(B),− det(B), or λ det(B), respectively. But by
considering the special case B = In, we see that det(E) = 1,−1 or λ, respectively,
and so det(EB) = det(E) det(B) in all three cases.
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Theorem 10.7. For any two n× n matrices A and B, we have

det(AB) = det(A) det(B).

Proof. We first dispose of the case when det(A) = 0. Then we have rank(A) < n by
Theorem 10.5. Let T1, T2 : V → V be linear maps corresponding to A and B, where
dim(V ) = n. Then AB corresponds to T1T2 (by Theorem 7.4). By Corollary 5.6,
rank(A) = rank(T1) < n implies that T1 is not surjective. But then T1T2 cannot
be surjective, so rank(T1T2) = rank(AB) < n. Hence det(AB) = 0 so det(AB) =
det(A) det(B).

On the other hand, if det(A) 6= 0, then A is nonsingular, and hence invertible,
so by Theorem 9.5 A is a product E1E2 . . . Er of elementary matrices Ei. Hence
det(AB) = det(E1E2 . . . ErB). Now the result follows from the above lemma, because

det(AB) = det(E1) det(E2 · · ·ErB)

= det(E1) det(E2) det(E3 · · ·ErB)

= det(E1) det(E2) · · · det(Er) det(B)

= det(E1E2 · · ·Er) det(B)

= det(A) det(B).

10.4 Minors and cofactors

Definition. Let A = (αij) be an n × n matrix. Let Aij be the (n − 1) × (n − 1)
matrix obtained from A by deleting the ith row and the jth column of A. Now let
Mij = det(Aij). Then Mij is called the (i, j)th minor of A.

Example. If A =





2 1 0
3 −1 2
5 −2 0



, then A12 =

(

3 2
5 0

)

and A31 =

(

1 0
−1 2

)

, and so

M12 = −10 and M31 = 2.

Definition. We define cij to be equal to Mij if i+ j is even, and to −Mij if i+ j is
odd. Or, more concisely,

cij = (−1)i+jMij = (−1)i+j det(Aij).

Then cij is called the (i, j)th cofactor of A.

Example. In the example above,

c11 =

∣

∣

∣

∣

−1 2
−2 0

∣

∣

∣

∣

= 4, c12 = −

∣

∣

∣

∣

3 2
5 0

∣

∣

∣

∣

= 10, c13 =

∣

∣

∣

∣

3 −1
5 −2

∣

∣

∣

∣

= −1,

c21 = −

∣

∣

∣

∣

1 0
−2 0

∣

∣

∣

∣

= 0, c22 =

∣

∣

∣

∣

2 0
5 0

∣

∣

∣

∣

= 0, c23 = −

∣

∣

∣

∣

2 1
5 −2

∣

∣

∣

∣

= 9,

c31 =

∣

∣

∣

∣

1 0
−1 2

∣

∣

∣

∣

= 2, c32 = −

∣

∣

∣

∣

2 0
3 2

∣

∣

∣

∣

= −4, c33 =

∣

∣

∣

∣

2 1
3 −1

∣

∣

∣

∣

= −5.

The cofactors give us a useful way of expressing the determinant of a matrix in
terms of determinants of smaller matrices.

Theorem 10.8. Let A be an n× n matrix.

(i) (Expansion of a determinant by the ith row.) For any i with 1 ≤ i ≤ n, we have

det(A) = αi1ci1 + αi2ci2 + · · ·+ αincin =
n
∑

j=1

αijcij .
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(ii) (Expansion of a determinant by the jth column.) For any j with 1 ≤ j ≤ n, we
have

det(A) = α1jc1j + α2jc2j + · · ·αnjcnj =
n
∑

i=1

αijcij .

For example, expanding the determinant of the matrix A above by the first row,
the third row, and the second column give respectively:

det(A) = 2× 4 + 1× 10 + 0×−1 = 18
det(A) = 5× 2 +−2×−4 + 0×−5 = 18
det(A) = 1× 10 +−1× 0 +−2×−4 = 18.

Proof of Theorem 10.8. By definition, we have

det(A) =
∑

φ∈Sn

sign(φ)α1φ(1)α2φ(2) . . . αnφ(n) (∗)

Step 1. We first find the sum of all of those signed elementary products in the sum
(∗) that contain αnn. These arise from those permutations φ with φ(n) = n; so the
required sum is

∑

φ∈Sn

φ(n)=n

sign(φ)α1φ(1)α2φ(2) . . . αnφ(n)

= αnn
∑

φ∈Sn−1

sign(φ)α1φ(1)α2φ(2) . . . αn−1φ(n−1)

= αnnMnn = αnncnn.

Step 2. Next we fix any i and j with 1 ≤ i, j ≤ n, and find the sum of all of those
signed elementary products in the sum (∗) that contain αij . We move row ri of A to
rn by interchanging ri with ri+1, ri+2, . . . , rn in turn. This involves n− i applications
of (R2), and leaves the rows of A other than ri in their original order. We then move
column cj to cn in the same way, by applying (C2) n − j times. Let the resulting
matrix be B = (βij) and denote its minors by Nij . Then βnn = αij , and Nnn =Mij .
Furthermore,

det(B) = (−1)2n−i−j det(A) = (−1)i+j det(A),

because (2n− i− j)− (i+ j) is even.
Now, by the result of Step 1, the sum of terms in det(B) involving βnn is

βnnNnn = αijMij = (−1)i+jαijcij ,

and hence, since det(B) = (−1)i+j det(A), the sum of terms involving αij in det(A)
is αijcij .

Step 3. The result follows from Step 2, because every signed elementary product
in the sum (∗) involves exactly one array element αij from each row and from each
column. Hence, for any given row or column, we get the full sum (∗) by adding up the
total of those products involving each individual element in that row or column.

Example. Expanding by a row and column can sometimes be a quick method of
evaluating the determinant of matrices containing a lot of zeros. For example, let

A =









9 0 2 6
1 2 9 −3
0 0 −2 0
−1 0 −5 2









.

Then, expanding by the third row, we get det(A) = −2
∣

∣

∣

9 0 6
1 2 −3
−1 0 2

∣

∣

∣, and then expanding

by the second column, det(A) = −2× 2
∣

∣
9 6
−1 2

∣

∣ = −96.
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10.5 The inverse of a matrix using determinants

Definition. Let A be an n×n matrix. We define the adjugate matrix adj(A) of A to
be the n× n matrix of which the (i, j)th element is the cofactor cji. In other words,
it is the transpose of the matrix of cofactors.

The adjugate is also sometimes called the adjoint. However, the word “adjoint” is
also used with other meanings, so to avoid confusion we will use the word “adjugate”.

Example. In the example above,

A =





2 1 0
3 −1 2
5 −2 0



 , adj(A) =





4 0 2
10 0 −4
−1 9 −5



 .

The adjugate is almost an inverse to A, as the following theorem shows.

Theorem 10.9. A adj(A) = det(A)In = adj(A)A

Proof. Let B = A adj(A) = (βij). Then βii =
∑n

k=1 αikcik = det(A) by The-
orem 10.8 (expansion by the ith row of A). For i 6= j, βij =

∑n
k=1 αikcjk, which is the

determinant of a matrix C obtained from A by substituting the ith row of A for the jth
row. But then C has two equal rows, so βij = det(C) = 0 by Theorem 10.1(iii). (This
is sometimes called an expansion by alien cofactors.) Hence A adj(A) = det(A)In. A
similar argument using columns instead of rows gives adj(A)A = det(A)In.

Example. In the example above, check that A adj(A) = adj(A)A = 18I3.

Corollary 10.10. If det(A) 6= 0, then A−1 = 1
det(A) adj(A).

(Theorems 9.2 and 10.5 imply that A is invertible if and only if det(A) 6= 0.)

Example. In the example above,





2 1 0
3 −1 2
5 −2 0





−1

=
1

18





4 0 2
10 0 −4
−1 9 −5



 ,

and in the example in Section 9,

A =





3 2 1
4 1 3
2 1 6



 , adj(A) =





3 −11 5
−18 16 −5
2 1 −5



 , det(A) = −25,

and so A−1 = −1
25 adj(A).

For 2 × 2 and (possibly) 3 × 3 matrices, the cofactor method of computing the
inverse is often the quickest. For larger matrices, the row reduction method described
in Section 9 is quicker.

10.6 Cramer’s rule for solving simultaneous equations

Given a system Ax = β of n equations in n unknowns, where A = (αij) is non-
singular, the solution is x = A−1β. So the ith component xi of this column vector is

the ith row of A−1β. Now, by Corollary 10.10, A−1 = 1
det(A) adj(A), and its (i, j)th

entry is cji/ det(A). Hence

xi =
1

det(A)

n
∑

j=1

cjiβj .
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Now let Ai be the matrix obtained from A by substituting β for the ith column of
A. Then the sum

∑n
j=1 cjiβj is precisely the expansion of det(Ai) by its ith column

(see Theorem 10.8). Hence we have xi = det(Ai)/ det(A). This is Cramer’s rule.
This is more of a curiosity than a practical method of solving simultaneous equa-

tions, although it can be quite quick in the 2 × 2 case. Even in the 3 × 3 case it is
rather slow.

Example. Let us solve the following system of linear equations:

2x + z = 1
y − 2z = 0

x + y + z = −1

Cramer’s rule gives

det(A) =

∣

∣

∣

∣

∣

∣

2 0 1
0 1 −2
1 1 1

∣

∣

∣

∣

∣

∣

= 5, det(A1) =

∣

∣

∣

∣

∣

∣

1 0 1
0 1 −2
−1 1 1

∣

∣

∣

∣

∣

∣

= 4

det(A2) =

∣

∣

∣

∣

∣

∣

2 1 1
0 0 −2
1 −1 1

∣

∣

∣

∣

∣

∣

= −6, det(A3) =

∣

∣

∣

∣

∣

∣

2 0 1
0 1 0
1 1 −1

∣

∣

∣

∣

∣

∣

= −3

so the solution is x = 4/5, y = −6/5, z = −3/5.

11 Change of basis and equivalent matrices

We have been thinking of matrices as representing linear maps between vector spaces.
But don’t forget that, when we defined the matrix corresponding to a linear map
between vector spaces U and V , the matrix depended on a particular choice of bases
for both U and V . In this section, we investigate the relationship between the matrices
corresponding to the same linear map T : U → V , but using different bases for the
vector spaces U and V . We first discuss the relationship between two different bases
of the same space. Assume throughout the section that all vector spaces are over the
same field K.

Let U be a vector space of dimension n, and let E = {e1, . . . , en} and E′ =
{e′1, . . . , e

′
n} be two bases of U . The matrix P = [E′, IU , E] of the identity map

IU : U → U using the basis E in the domain and E′ in the range is called the change
of basis matrix from the basis E to the basis E′.

Let us look carefully what this definition says. Taking P = (σij), we obtain from
Section 7.1

IU (ej) = ej =
n
∑

i=1

σije
′
i for 1 ≤ j ≤ n. (∗)

In other words, the columns of P are the coordinates of the “old” basis vectors ei
with respect to the “new” basis e′i.

The name “change of basis matrix” is justified by the following proposition.

Proposition 11.1. With the above notation, let v ∈ U , and let v and v′ denote the
column vectors of coordinates of v with respect to the bases E and E′, respectively.
Then Pv = v′.

Proof. This follows immediately from Proposition 7.2 applied to the identity map
IU .

This gives a useful way to think about the change of basis matrix: it is the matrix
which turns a vector’s coordinates with respect to the “old” basis into the same
vector’s coordinates with respect to the “new” basis.
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Proposition 11.2. The change of basis matrix is invertible. More precisely, if P is
the change of basis matrix from the basis E to the basis E′ and Q is the change of
basis matrix from the basis E′ to the basis E, then P = Q−1.

Proof. Consider the composition of linear maps IU : U
IU−→ U

IU−→ U using the basis
E′ for the first and the third copy of U and the basis E for the middle copy of U .
The composition has matrix In because the same basis is used for both domain and
range. But the first IU has matrix Q (change of basis from E′ to E) and the second
IU similarly has matrix P . Therefore by Theorem 7.4, In = PQ.

Similarly, In = QP . Consequently, P = Q−1.

Example. Let U = R3, e′1 = (1, 0, 0), e′2 = (0, 1, 0), e′3 = (0, 0, 1) (the standard
basis) and e1 = (0, 2, 1), e2 = (1, 1, 0), e3 = (1, 0, 0). Then

P =





0 1 1
2 1 0
1 0 0



 .

The columns of P are the coordinates of the “old” basis vectors e1, e2, e3 with respect
to the “new” basis e′1, e

′
2, e

′
3.

The converse of Proposition 11.2 is also true:

Proposition 11.3. Every invertible matrix is a change of basis matrix. More pre-
cisely, if U is a vector space of dimension n over K, and if P is an invertible matrix
in Kn,n, then there are bases E and E′ of U such that P is the change of basis matrix
from E to E′.

Proof. To prove that P = (σij) is a change of basis matrix, let F ′ = {f ′1, . . . f
′
n} be an

arbitrary basis of U . Define fi := σ1if
′
1 + σ2if

′
2 + . . .+ σnif

′
n for every i ∈ {1, . . . , n}.

Note that if the set of vectors F = {f1, . . . fn} is a basis of U , then P is by definition
the change of basis matrix from F to F ′ as (∗) is satisfied (this is why we defined
the fi the way we did). It only remains to check that F is indeed a basis. To see
this, note that as P is invertible, its rank is n by Theorem 9.2 and Corollary 5.6.
This means that its columns are linearly independent (recall the definition of column
rank). But this is equivalent to saying that the vectors F are linearly independent
and so they form a basis of U by Corollary 3.9.

Now we will turn to the effect of change of basis on linear maps. let T : U → V
be a linear map, where dim(U) = n, dim(V ) = m. Choose a basis E = {e1, . . . , en}
of U and a basis F = {f1, . . . , fm} of V . Then, from Section 7.1, we have

T (ej) =
m
∑

i=1

αijfi for 1 ≤ j ≤ n

where A = (αij) = [F, T,E] is the m×n matrix of T with respect to the bases E and
F of U and V .

Now choose new bases E′ = {e′1, . . . , e
′
n} of U and F ′ = {f ′1, . . . , f

′
m} of V . There

is now a new matrix representing the linear transformation T :

T (e′j) =
m
∑

i=1

βijf
′
i for 1 ≤ j ≤ n,

where B = (βij) = [F ′, T, E′] is the m × n matrix of T with respect to the bases E′

and F ′. Our objective is to find the relationship between A and B in terms of the
change of basis matrices.

Let the n× n matrix P = (σij) be the change of basis matrix from E to E′, and
let the m×m matrix Q = (τij) be the change of basis matrix from F to F ′.
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P ↓ ↓ Q

U V

Matrix A

Matrix B

T ✲

e1, e2, . . . , en

e′1, e
′
2, . . . , e

′
n

f1, f2, . . . , fm

f ′1, f
′
2, . . . , f

′
m

Theorem 11.4. With the above notation, we have BP = QA, or equivalently B =
QAP−1.

Proof. By Theorem 7.4, BP represents the composite of the linear maps IU using
bases E and E′ and T using bases E′ and F ′. So BP represents T using bases E and
F ′. Similarly, QA represents the composite of T using bases E and F and IV using
bases F and F ′, so QA also represents T using bases E and F ′. Hence BP = QA.

Another way to think of this is the following. The matrix B should be the matrix
which, given the coordinates of a vector u ∈ U with respect to the basis E′, produces
the coordinates of T (u) ∈ V with respect to the basis F ′. On the other hand, suppose
we already know the matrix A, which performs the corresponding task with the “old”
bases E and F . Now, given the coordinates of some vector u with respect to the “new”
basis, we need to:

(i) Find the coordinates of u with respect to the “old” basis of U : this is done by
multiplying by the change of basis matrix from E′ to E, which is P−1;

(ii) find the coordinates of T (u) with respect to the “old” basis of V : this is what
multiplying by A does;

(iii) translate the result into coordinates with respect to the “new” basis for V ; this
is done by multiplying by the change of basis matrix Q.

Putting these three steps together, we again see that B = QAP−1.

Corollary 11.5. Two m× n matrices A and B represent the same linear map from
an n-dimensional vector space U to an m-dimensional vector space V (with respect
to different bases) if and only if there exist invertible n × n and m ×m matrices P
and Q with B = QAP−1.

Proof. For the forward direction, note that it follows from the Theorem 11.4 that A
and B represent the same linear map if there exist change of basis matrices P and Q
with B = QAP−1, and by Proposition 11.2 the change of basis matrices are precisely
invertible matrices of the correct size.

For the backward direction, suppose there exist invertible matrices Q,P such
that B = QAP−1. By Proposition 11.3, Q is a change of basis matrix between two
bases F, F ′ of V , and P is a change of basis matrix between two bases of E,E′ of
U . As A corresponds to some linear map T with respect to the bases E and F (by
Theorem 7.1), it follows from Theorem 11.4 that B is the matrix of the same linear
map T corresponding to the bases E′ and F ′.

Definition. Two m × n matrices A and B are said to be equivalent if there exist
invertible P and Q with B = QAP . (Note that this is the same as saying that there
exist invertible P and Q with B = QAP−1, since P−1 is invertible itself.)

It is easy to check that being equivalent is an equivalence relation on the set Km,n

of m× n matrices over K using Corollary 11.5. We shall show now that equivalence
of matrices has other characterisations.



MA106 Linear Algebra 53

Theorem 11.6. Let A and B be m× n matrices over K. Then the following condi-
tions on A and B are equivalent.

(i) A and B are equivalent.

(ii) A and B represent the same linear map with respect to different bases.

(iii) A and B have the same rank.

(iv) B can be obtained from A by application of elementary row and column opera-
tions.

Proof. (i) ⇔ (ii): This is true by Corollary 11.5.
(ii) ⇒ (iii): Since A and be both represent the same linear map T , we have

rank(A) = rank(T ) = rank(B) by Theorem 8.3.
(iii) ⇒ (iv): By Theorem 8.2, if A and B both have rank s, then they can both

be brought into the Smith normal form

Es =

(

Is 0s,n−s
0m−s,s 0m−s,n−s

)

by elementary row and column operations. Since these operations are invertible, we
can first transform A to Es and then transform Es to B.

(iv) ⇒ (i): We saw in Section 9.2 that applying an elementary row operation to
A can be achieved by multiplying A on the left by an elementary row matrix, and
similarly applying an elementary column operation can be done by multiplying A
on the right by an elementary column matrix. Hence (iv) implies that there exist
elementary row matrices R1, . . . , Rr and elementary column matrices C1, . . . , Cs with
B = Rr · · ·R1AC1 · · ·Cs. Since elementary matrices are invertible, Q = Rr · · ·R1 and
P = C1 · · ·Cs are invertible and B = QAP .

In the above proof, we also showed the following:

Proposition 11.7. Any m× n matrix is equivalent to the matrix Es defined above,
where s = rank(A).

This fact provides a further reason why the Smith normal form, also called the
canonical form for m × n matrices under equivalence, is important: it is an easily
recognizable representative of its equivalence class. This is one of the many examples
in mathematics where it is useful to have a canonical form, i.e. a nice representative,
for a class of objects.

12 Similar matrices, eigenvectors and eigenvalues

12.1 Similar matrices

In Section 11 we studied what happens to the matrix of a linear map T : U → V
when we change the bases of U and V . Now we look at the case when U = V , where
we only have a single vector space V , and a single change of basis. Surprisingly, this
turns out to be more complicated than the situation with two different spaces.

Let V be a vector space of dimension n over the field K, and let T : V → V be a
linear map. Now, given any basis for V , there will be a matrix representing T with
respect to that basis.

Let E = {e1, . . . , en} and E′ = {e′1, . . . , e
′
n} be two bases of V , and let A = (αij)

and B = (βij) be the matrices of T with respect to E and E′ respectively. Let
P = (σij) be the change of basis matrix from E′ to E. Note that this is the opposite
change of basis to the one considered in the last section. Different textbooks adopt
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different conventions on which way round to do this; this is how we’ll do it in this
course.

Then Theorem 11.4 applies, and with both Q and P replaced by P−1 we find:

Theorem 12.1. With the notation above, B = P−1AP .

Definition. Two n×n matrices over K are said to be similar if there exists an n×n
invertible matrix P with B = P−1AP .

So two matrices are similar if and only if they represent the same linear map
T : V → V with respect to different bases of V . It is easily checked that similarity is
an equivalence relation on the set of n× n matrices over K.

We saw in Theorem 11.6 that two matrices of the same size are equivalent if and
only if they have the same rank. It is more difficult to decide whether two matrices
are similar, because we have much less flexibility - there is only one basis to choose,
not two. Similar matrices are certainly equivalent, so they have the same rank, but
equivalent matrices need not be similar.

Example. Let A =

(

1 0
0 1

)

and B =

(

1 1
0 1

)

.

Then A and B both have rank 2, so they are equivalent. However, since A = I2,
for any invertible 2× 2 matrix P we have P−1AP = A, so A is similar only to itself.
Hence A and B are not similar.

To decide whether matrices are similar, it would be helpful to have a canonical
form, just like we had the canonical form Es in Section 11 for equivalence. Then we
could test for similarity by reducing A and B to canonical form and checking whether
we get the same result. But this turns out to be quite difficult, and depends on the
field K. For the case K = C (the complex numbers), we have the Jordan Canonical
Form, which Maths students learn about in the Second Year.

12.2 Eigenvectors and eigenvalues

In this course, we shall only consider the question of which matrices are similar to a
diagonal matrix.

Definition. A matrix which is similar to a diagonal matrix is said to be diagonalis-
able.

(Recall that A = (αij) is diagonal if αij = 0 for i 6= j.) We shall see, for example,
that the matrix B in the example above is not diagonalisable.

It turns out that the possible entries on the diagonal of a matrix similar to A can
be calculated directly from A. They are called eigenvalues of A and depend only on
the linear map to which A corresponds, and not on the particular choice of basis.

Definition. Let T : V → V be a linear map, where V is a vector space over K.
Suppose that for some non-zero vector v ∈ V and some scalar λ ∈ K, we have
T (v) = λv. Then v is called an eigenvector of T , and λ is called the eigenvalue of T
corresponding to v.

Note that the zero vector is not an eigenvector. (This would not be a good idea,
because T0 = λ0 for all λ.) However, the zero scalar 0K may sometimes be an
eigenvalue (corresponding to some non-zero eigenvector).

Example. Let T : R2 → R2 be defined by T (α1, α2) = (2α1, 0). Then T (1, 0) =
2(1, 0), so 2 is an eigenvalue and (1, 0) an eigenvector. Also T (0, 1) = (0, 0) = 0(0, 1),
so 0 is an eigenvalue and (0, 1) an eigenvector.
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In this example, notice that in fact (α, 0) and (0, α) are eigenvectors for any α 6= 0.
In general, it is easy to see that if v is an eigenvector of T , then so is αv for any
non-zero scalar α.

In some books, eigenvectors and eigenvalues are called characteristic vectors and
characteristic roots, respectively.

Let e1, . . . , en be a basis of V , and let A = (αij) be the matrix of T with respect
to this basis. As in Section 7.1, to each vector v = λ1e1+ · · ·+λnen ∈ V , we associate
its column vector of coordinates

v =











λ1
λ2
...
λn











∈ Kn,1.

Then, by Proposition 7.2, for u,v ∈ V , we have T (u) = v if and only if Au = v, and
in particular

T (v) = λv ⇐⇒ Av = λv. (4)

So it will be useful to define the eigenvalues and eigenvectors of a matrix, as well
as of a linear map.

Definition. Let A be an n × n matrix over K. Suppose that, for some non-zero
column vector v ∈ Kn,1 and some scalar λ ∈ K, we have Av = λv. Then v is called
an eigenvector of A, and λ is called the eigenvalue of A corresponding to v.

It follows from (4) that if the matrix A corresponds to the linear map T , then λ
is an eigenvalue of T if and only if it is an eigenvalue of A. Thus similar matrices
have the same eigenvalues, because they represent the same linear map with respect
to different bases. We shall give another proof of this fact in Theorem 12.3 below.

Given a matrix, how can we compute its eigenvalues? Certainly trying every
vector to see whether it is an eigenvector is not a practical approach.

Theorem 12.2. Let A be an n×n matrix. Then λ is an eigenvalue of A if and only
if det(A− λIn) = 0.

Proof. Suppose that λ is an eigenvalue of A. Then Av = λv for some non-zero
v ∈ Kn,1. This is equivalent to Av = λInv, or (A−λIn)v = 0. But this says exactly
that v is a non-zero solution to the homogeneous system of simultaneous equations
defined by the matrix A− λIn, and then by Theorem 9.6(i), A− λIn is singular, and
so det(A− λIn) = 0 by Theorem 10.5.

Conversely, if det(A−λIn) = 0 then A−λIn is singular, and so by Theorem 9.6(i)
the system of simultaneous equations defined by A−λIn has nonzero solutions. Hence
there exists a non-zero v ∈ Kn,1 with (A − λIn)v = 0, which is equivalent to Av =
λInv, and so λ is an eigenvalue of A.

If we treat λ as an unknown, we get a polynomial equation which we can solve to
find all the eigenvalues of A:

Definition. For an n × n matrix A, the equation det(A − xIn) = 0 is called the
characteristic equation of A, and det(A− xIn) is called the characteristic polynomial
of A.

Note that the characteristic polynomial of an n × n matrix is a polynomial of
degree n in x.

The above theorem says that the eigenvalues of A are the roots of the charac-
teristic equation, which means that we have a method of calculating them. Once
the eigenvalues are known, it is then straightforward to compute the corresponding
eigenvectors.
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Example. Let A =

(

1 2
5 4

)

. Then

det(A− xI2) =

∣

∣

∣

∣

1− x 2
5 4− x

∣

∣

∣

∣

= (1− x)(4− x)− 10 = x2 − 5x− 6 = (x− 6)(x+ 1).

Hence the eigenvalues of A are the roots of (x− 6)(x+ 1) = 0; that is, 6 and −1.

Let us now find the eigenvectors corresponding to the eigenvalue 6. We seek a
non-zero column vector ( x1x2 ) such that

(

1 2
5 4

)(

x1
x2

)

= 6

(

x1
x2

)

; that is,

(

−5 2
5 −2

)(

x1
x2

)

=

(

0
0

)

.

Solving this easy system of linear equations, we can take

(

x1
x2

)

=

(

2
5

)

to be our

eigenvector; or indeed any non-zero multiple of

(

2
5

)

.

Similarly, for the eigenvalue −1, we want a non-zero column vector ( x1x2 ) such that

(

1 2
5 4

)(

x1
x2

)

= −1

(

x1
x2

)

; that is,

(

2 2
5 5

)(

x1
x2

)

=

(

0
0

)

,

and we can take

(

x1
x2

)

=

(

1
−1

)

to be our eigenvector.

Example. This example shows that the eigenvalues can depend on the field K. Let

A =

(

0 −1
1 0

)

. Then det(A− xI2) =

∣

∣

∣

∣

−x −1
1 −x

∣

∣

∣

∣

= x2 + 1,

so the characteristic equation is x2 + 1 = 0. If K = R (the real numbers) then this
equation has no solutions, so there are no eigenvalues or eigenvectors. However, if
K = C (the complex numbers), then there are two eigenvalues i and −i, and by a
similar calculation to the one in the last example, we find that

(

−1
i

)

and ( 1i ) are
eigenvectors corresponding to i and −i respectively.

Theorem 12.3. Similar matrices have the same characteristic equation and hence
the same eigenvalues.

Proof. Let A and B be similar matrices. Then there exists an invertible matrix P
with B = P−1AP . Then

det(B − xIn) = det(P−1AP − xIn)

= det(P−1(A− xIn)P )

= det(P−1) det(A− xIn) det(P ) (by Theorem 10.3)

= det(P−1) det(P ) det(A− xIn)

= det(A− xIn).

Hence A and B have the same characteristic equation. Since the eigenvalues are the
roots of the characteristic equation, they have the same eigenvalues.

Since the different matrices corresponding to a linear map T are all similar, they
all have the same characteristic equation, so we can unambiguously refer to it also as
the characteristic equation of T if we want to.

There is one case where the eigenvalues can be written down immediately.
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Proposition 12.4. Suppose that the matrix A is upper triangular. Then the eigen-
values of A are just the diagonal entries αii of A.

Proof. We saw in Corollary 10.2 that the determinant of A is the product of the diag-
onal entries αii. Hence the characteristic polynomial of such a matrix is

∏n
i=1(αii−x),

and so the eigenvalues are the αii.

Example. Let A =

(

1 1
0 1

)

. Then A is upper triangular, so its only eigenvalue is 1.

We can now see that A cannot be similar to any diagonal matrix B. Such a B would
also have just 1 as an eigenvalue, and then, by Corollary 10.2 again, this would force
B to be the identity matrix I2. But P

−1I2P = I2 for any invertible matrix P , so I2 is
not similar to any matrix other than itself! So A cannot be similar to I2, and hence
A is not diagonalisable.

The next theorem describes the connection between diagonalisable matrices and
eigenvectors. If you have understood everything so far then its proof should be almost
obvious.

Theorem 12.5. Let T : V → V be a linear map. Then there is a basis of V with
respect to which the matrix of T is diagonal if and only if there is a basis of V
consisting of eigenvectors of T .

Equivalently, let A be an n × n matrix over K. Then A is similar to a diagonal
matrix if and only if the space Kn,1 has a basis consisting of eigenvectors of A.

Proof. The equivalence of the two statements follows directly from the correspondence
between linear maps and matrices, and the corresponding definitions of eigenvectors
and eigenvalues.

Suppose that the matrix A = (αij) of T is diagonal with respect to the basis
e1, . . . , en of V . Recall from Section 7.1 that the images of the ith basis vector of
V is represented by the ith column of A. But since A is diagonal, this column has
the single non-zero entry αii. Hence T (ei) = αiiei, and so each basis vector ei is an
eigenvector of A.

Conversely, suppose that e1, . . . , en is a basis of V consisting entirely of eigen-
vectors of T . Then, for each i, we have T (ei) = λiei for some λi ∈ K. But then the
matrix of T with respect to this basis is the diagonal matrix A = (αij) with αii = λi
for each i.

We now show that A is diagonalisable in the case when there are n distinct
eigenvalues.

Theorem 12.6. Let λ1, . . . , λr be distinct eigenvalues of T : V → V , and let v1, . . . ,vr
be corresponding eigenvectors. (So T (vi) = λivi for 1 ≤ i ≤ r.) Then v1, . . . ,vr are
linearly independent.

Proof. We prove this by induction on r. It is true for r = 1, because eigenvectors are
non-zero by definition. For r > 1, suppose that for some α1, . . . , αr ∈ K we have

α1v1 + α2v2 + · · ·+ αrvr = 0.

Then, applying T to this equation gives

α1λ1v1 + α2λ2v2 + · · ·+ αrλrvr = 0.

Now, subtracting λ1 times the first equation from the second gives

α2(λ2 − λ1)v2 + · · ·+ αr(λr − λ1)vr = 0.
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By inductive hypothesis, v2, . . . ,vr are linearly independent, so αi(λi − λ1) = 0 for
2 ≤ i ≤ r. But, by assumption, λi − λ1 6= 0 for i > 1, so we must have αi = 0 for
i > 1. But then α1v1 = 0, so α1 is also zero. Thus αi = 0 for all i, which proves that
v1, . . . ,vr are linearly independent.

Corollary 12.7. If the linear map T : V → V (or equivalently the n × n matrix A)
has n distinct eigenvalues, where n = dim(V ), then T (or A) is diagonalisable.

Proof. Under the hypothesis, there are n linearly independent eigenvectors, which
form a basis of V by Corollary 3.9. The result follows from Theorem 12.5.

Example.

A =





4 5 2
−6 −9 −4
6 9 4



 . Then |A− xI3| =

∣

∣

∣

∣

∣

∣

4− x 5 2
−6 −9− x −4
6 9 4− x

∣

∣

∣

∣

∣

∣

.

To help evaluate this determinant, apply first the row operation r3 → r3 + r2 and
then the column operation c2 → c2 − c3, giving

|A− xI3| =

∣

∣

∣

∣

∣

∣

4− x 5 2
−6 −9− x −4
0 −x −x

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

4− x 3 2
−6 −5− x −4
0 0 −x

∣

∣

∣

∣

∣

∣

,

and then expanding by the third row we get

|A− xI3| = −x
(

(4− x)(−5− x) + 18
)

= −x(x2 + x− 2) = −x(x+ 2)(x− 1)

so the eigenvalues are 0, 1 and −2. Since these are distinct, we know from the above
corollary that A can be diagonalised. In fact, the eigenvectors will be the new basis
with respect to which the matrix is diagonal, so we will calculate these.

In the following calculations, we will denote eigenvectors v1, etc. by
(

x1
x2
x3

)

, where

x1, x2, x3 need to be calculated by solving simultaneous equations.
For the eigenvalue λ = 0, an eigenvector v1 satisfies Av1 = 0, which gives the

three equations:

4x1 + 5x2 + 2x3 = 0; −6x1 − 9x2 − 4x3 = 0; 6x1 + 9x2 + 4x3 = 0.

The third is clearly redundant, and adding twice the first to the second gives 2x1+x2 =

0 and then we see that one solution is v1 =





1
−2
3



.

For λ = 1, we want an eigenvector v2 with Av2 = v2, which gives the equations

4x1 + 5x2 + 2x3 = x1; −6x1 − 9x2 − 4x3 = x2; 6x1 + 9x2 + 4x3 = x3;

or equivalently

3x1 + 5x2 + 2x3 = 0; −6x1 − 10x2 − 4x3 = 0; 6x1 + 9x2 + 3x3 = 0.

Adding the second and third equations gives x2 + x3 = 0 and then we see that a

solution is v2 =





1
−1
1



.

Finally, for λ = −2, Av3 = −2v3 gives the equations

6x1 + 5x2 + 2x3 = 0; −6x1 − 7x2 − 4x3 = 0; 6x1 + 9x2 + 6x3 = 0,
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of which one solution is v3 =





1
−2
2



.

Now, if we change basis to v1,v2,v3, we should get the diagonal matrix with
the eigenvalues 0, 1,−2 on the diagonal. We can check this by direct calculation.
Remember that P is the change of basis matrix from the new basis to the old one
and has columns the new basis vectors expressed in terms of the old. But the old
basis is the standard basis, so the columns of P are the new basis vectors. Hence

P =





1 1 1
−2 −1 −2
3 1 2





and, according to Theorem 12.1, we should have P−1AP =





0 0 0
0 1 0
0 0 −2



 .

To check this, we first need to calculate P−1, either by row reduction or by the
cofactor method. The answer turns out to be

P−1 =





0 1 1
2 1 0
−1 −2 −1



 ,

and now we can check that the above equation really does hold.

Warning! The converse of Corollary 12.7 is not true. If it turns out that there do
not exist n distinct eigenvalues, then you cannot conclude from this that the matrix
is not diagonalisable. This is really rather obvious, because the identity matrix has
only a single eigenvalue, but it is diagonal already. Even so, this is one of the most
common mistakes that students make.

If there are fewer than n distinct eigenvalues, then the matrix may or may not
be diagonalisable, and you have to test directly to see whether there are n linearly
independent eigenvectors. Let us consider two rather similar looking examples:

A1 =





1 1 1
0 −1 1
0 0 1



 , A2 =





1 2 −2
0 −1 2
0 0 1



 .

Both matrices are upper triangular, so we know from Proposition 12.4 that both
have eigenvalues 1 and −1, with 1 repeated. Since −1 occurs only once, it can only
have a single associated linearly independent eigenvector. (Can you prove that?)

Solving the equations as usual, we find that A1 and A2 have eigenvectors





1
−2
0



 and





1
−1
0



, respectively, associated with eigenvalue −1.

The repeated eigenvalue 1 is more interesting, because there could be one or
two associated linearly independent eigenvectors. The equation A1x = x gives the
equations

x1 + x2 + x3 = x1; −x2 + x3 = x2; x3 = x3,

so x2 + x3 = −2x2 + x3 = 0, which implies that x2 = x3 = 0. Hence the only

eigenvectors are multiples of





1
0
0



. Hence A1 has only two linearly independent

eigenvectors in total, and so it cannot be diagonalised.
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On the other hand, A2x = x gives the equations

x1 + 2x2 − 2x3 = x1; −x2 + 2x3 = x2; x3 = x3,

which reduce to the single equation x2 − x3 = 0. This time there are two linearly

independent solutions, giving eigenvectors





1
0
0



 and





0
1
1



. So A2 has three linearly

independent eigenvectors in total, and it can be diagonalised. In fact, using the
eigenvectors as columns of the change of basis matrix P as before gives

P =





1 0 1
0 1 −1
0 1 0



 and we compute P−1 =





1 1 −1
0 0 1
0 −1 1



 .

We can now check that P−1A2P =





1 0 0
0 1 0
0 0 −1



, as expected.
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